Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 23-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabbida3.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| rabbida3.2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) ) | ||
| Assertion | rabbida3 | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐵 ∣ 𝜒 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbida3.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | rabbida3.2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) ) | |
| 3 | 1 2 | abbid | ⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) } ) |
| 4 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } | |
| 5 | df-rab | ⊢ { 𝑥 ∈ 𝐵 ∣ 𝜒 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) } | |
| 6 | 3 4 5 | 3eqtr4g | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐵 ∣ 𝜒 } ) |