Metamath Proof Explorer


Theorem smfdivdmmbl

Description: If a functions and a sigma-measurable function have domains in the sigma-algebra, the domain of the division of the two functions is in the sigma-algebra. This is the third statement of Proposition 121H of Fremlin1 p. 39 . Note: While the theorem in the book assumes both functions are sigma-measurable, this assumption is unnecessary for the part concerning their division, for the function at the numerator (it is needed only for the function at the denominator). (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses smfdivdmmbl.1
|- F/ x ph
smfdivdmmbl.2
|- F/_ x B
smfdivdmmbl.3
|- ( ph -> S e. SAlg )
smfdivdmmbl.4
|- ( ph -> A e. S )
smfdivdmmbl.5
|- ( ph -> B e. S )
smfdivdmmbl.6
|- ( ( ph /\ x e. B ) -> D e. W )
smfdivdmmbl.7
|- ( ph -> ( x e. B |-> D ) e. ( SMblFn ` S ) )
smfdivdmmbl.8
|- E = { x e. B | D =/= 0 }
Assertion smfdivdmmbl
|- ( ph -> ( A i^i E ) e. S )

Proof

Step Hyp Ref Expression
1 smfdivdmmbl.1
 |-  F/ x ph
2 smfdivdmmbl.2
 |-  F/_ x B
3 smfdivdmmbl.3
 |-  ( ph -> S e. SAlg )
4 smfdivdmmbl.4
 |-  ( ph -> A e. S )
5 smfdivdmmbl.5
 |-  ( ph -> B e. S )
6 smfdivdmmbl.6
 |-  ( ( ph /\ x e. B ) -> D e. W )
7 smfdivdmmbl.7
 |-  ( ph -> ( x e. B |-> D ) e. ( SMblFn ` S ) )
8 smfdivdmmbl.8
 |-  E = { x e. B | D =/= 0 }
9 nfcv
 |-  F/_ x RR
10 1 2 3 6 7 smffmptf
 |-  ( ph -> ( x e. B |-> D ) : B --> RR )
11 2 9 10 fvmptelcdmf
 |-  ( ( ph /\ x e. B ) -> D e. RR )
12 0red
 |-  ( ph -> 0 e. RR )
13 1 2 3 5 11 7 12 8 smfdmmblpimne
 |-  ( ph -> E e. S )
14 3 4 13 salincld
 |-  ( ph -> ( A i^i E ) e. S )