Metamath Proof Explorer


Theorem smfdmmblpimne

Description: If a measurable function w.r.t. to a sigma-algebra has domain in the sigma-algebra, the set of elements that are not mapped to a given real, is in the sigma-algebra (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses smfdmmblpimne.1
|- F/ x ph
smfdmmblpimne.2
|- F/_ x A
smfdmmblpimne.3
|- ( ph -> S e. SAlg )
smfdmmblpimne.4
|- ( ph -> A e. S )
smfdmmblpimne.5
|- ( ( ph /\ x e. A ) -> B e. RR )
smfdmmblpimne.6
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )
smfdmmblpimne.7
|- ( ph -> C e. RR )
smfdmmblpimne.8
|- D = { x e. A | B =/= C }
Assertion smfdmmblpimne
|- ( ph -> D e. S )

Proof

Step Hyp Ref Expression
1 smfdmmblpimne.1
 |-  F/ x ph
2 smfdmmblpimne.2
 |-  F/_ x A
3 smfdmmblpimne.3
 |-  ( ph -> S e. SAlg )
4 smfdmmblpimne.4
 |-  ( ph -> A e. S )
5 smfdmmblpimne.5
 |-  ( ( ph /\ x e. A ) -> B e. RR )
6 smfdmmblpimne.6
 |-  ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )
7 smfdmmblpimne.7
 |-  ( ph -> C e. RR )
8 smfdmmblpimne.8
 |-  D = { x e. A | B =/= C }
9 5 rexrd
 |-  ( ( ph /\ x e. A ) -> B e. RR* )
10 7 rexrd
 |-  ( ph -> C e. RR* )
11 10 adantr
 |-  ( ( ph /\ x e. A ) -> C e. RR* )
12 1 9 11 pimxrneun
 |-  ( ph -> { x e. A | B =/= C } = ( { x e. A | B < C } u. { x e. A | C < B } ) )
13 8 12 eqtrid
 |-  ( ph -> D = ( { x e. A | B < C } u. { x e. A | C < B } ) )
14 3 4 salrestss
 |-  ( ph -> ( S |`t A ) C_ S )
15 1 2 3 5 6 10 smfpimltxrmptf
 |-  ( ph -> { x e. A | B < C } e. ( S |`t A ) )
16 14 15 sseldd
 |-  ( ph -> { x e. A | B < C } e. S )
17 1 2 3 5 6 10 smfpimgtxrmptf
 |-  ( ph -> { x e. A | C < B } e. ( S |`t A ) )
18 14 17 sseldd
 |-  ( ph -> { x e. A | C < B } e. S )
19 3 16 18 saluncld
 |-  ( ph -> ( { x e. A | B < C } u. { x e. A | C < B } ) e. S )
20 13 19 eqeltrd
 |-  ( ph -> D e. S )