| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfdmmblpimne.1 |
|- F/ x ph |
| 2 |
|
smfdmmblpimne.2 |
|- F/_ x A |
| 3 |
|
smfdmmblpimne.3 |
|- ( ph -> S e. SAlg ) |
| 4 |
|
smfdmmblpimne.4 |
|- ( ph -> A e. S ) |
| 5 |
|
smfdmmblpimne.5 |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
| 6 |
|
smfdmmblpimne.6 |
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) |
| 7 |
|
smfdmmblpimne.7 |
|- ( ph -> C e. RR ) |
| 8 |
|
smfdmmblpimne.8 |
|- D = { x e. A | B =/= C } |
| 9 |
5
|
rexrd |
|- ( ( ph /\ x e. A ) -> B e. RR* ) |
| 10 |
7
|
rexrd |
|- ( ph -> C e. RR* ) |
| 11 |
10
|
adantr |
|- ( ( ph /\ x e. A ) -> C e. RR* ) |
| 12 |
1 9 11
|
pimxrneun |
|- ( ph -> { x e. A | B =/= C } = ( { x e. A | B < C } u. { x e. A | C < B } ) ) |
| 13 |
8 12
|
eqtrid |
|- ( ph -> D = ( { x e. A | B < C } u. { x e. A | C < B } ) ) |
| 14 |
3 4
|
salrestss |
|- ( ph -> ( S |`t A ) C_ S ) |
| 15 |
1 2 3 5 6 10
|
smfpimltxrmptf |
|- ( ph -> { x e. A | B < C } e. ( S |`t A ) ) |
| 16 |
14 15
|
sseldd |
|- ( ph -> { x e. A | B < C } e. S ) |
| 17 |
1 2 3 5 6 10
|
smfpimgtxrmptf |
|- ( ph -> { x e. A | C < B } e. ( S |`t A ) ) |
| 18 |
14 17
|
sseldd |
|- ( ph -> { x e. A | C < B } e. S ) |
| 19 |
3 16 18
|
saluncld |
|- ( ph -> ( { x e. A | B < C } u. { x e. A | C < B } ) e. S ) |
| 20 |
13 19
|
eqeltrd |
|- ( ph -> D e. S ) |