Metamath Proof Explorer


Theorem smfdmmblpimne

Description: If a measurable function w.r.t. to a sigma-algebra has domain in the sigma-algebra, the set of elements that are not mapped to a given real, is in the sigma-algebra (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses smfdmmblpimne.1 x φ
smfdmmblpimne.2 _ x A
smfdmmblpimne.3 φ S SAlg
smfdmmblpimne.4 φ A S
smfdmmblpimne.5 φ x A B
smfdmmblpimne.6 φ x A B SMblFn S
smfdmmblpimne.7 φ C
smfdmmblpimne.8 D = x A | B C
Assertion smfdmmblpimne φ D S

Proof

Step Hyp Ref Expression
1 smfdmmblpimne.1 x φ
2 smfdmmblpimne.2 _ x A
3 smfdmmblpimne.3 φ S SAlg
4 smfdmmblpimne.4 φ A S
5 smfdmmblpimne.5 φ x A B
6 smfdmmblpimne.6 φ x A B SMblFn S
7 smfdmmblpimne.7 φ C
8 smfdmmblpimne.8 D = x A | B C
9 5 rexrd φ x A B *
10 7 rexrd φ C *
11 10 adantr φ x A C *
12 1 9 11 pimxrneun φ x A | B C = x A | B < C x A | C < B
13 8 12 eqtrid φ D = x A | B < C x A | C < B
14 3 4 salrestss φ S 𝑡 A S
15 1 2 3 5 6 10 smfpimltxrmptf φ x A | B < C S 𝑡 A
16 14 15 sseldd φ x A | B < C S
17 1 2 3 5 6 10 smfpimgtxrmptf φ x A | C < B S 𝑡 A
18 14 17 sseldd φ x A | C < B S
19 3 16 18 saluncld φ x A | B < C x A | C < B S
20 13 19 eqeltrd φ D S