| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfpimne.p |
|- F/ x ph |
| 2 |
|
smfpimne.x |
|- F/_ x F |
| 3 |
|
smfpimne.s |
|- ( ph -> S e. SAlg ) |
| 4 |
|
smfpimne.f |
|- ( ph -> F e. ( SMblFn ` S ) ) |
| 5 |
|
smfpimne.d |
|- D = dom F |
| 6 |
|
smfpimne.a |
|- ( ph -> A e. RR* ) |
| 7 |
3 4 5
|
smff |
|- ( ph -> F : D --> RR ) |
| 8 |
7
|
ffvelcdmda |
|- ( ( ph /\ x e. D ) -> ( F ` x ) e. RR ) |
| 9 |
8
|
rexrd |
|- ( ( ph /\ x e. D ) -> ( F ` x ) e. RR* ) |
| 10 |
6
|
adantr |
|- ( ( ph /\ x e. D ) -> A e. RR* ) |
| 11 |
1 9 10
|
pimxrneun |
|- ( ph -> { x e. D | ( F ` x ) =/= A } = ( { x e. D | ( F ` x ) < A } u. { x e. D | A < ( F ` x ) } ) ) |
| 12 |
3 4 5
|
smfdmss |
|- ( ph -> D C_ U. S ) |
| 13 |
3 12
|
subsaluni |
|- ( ph -> D e. ( S |`t D ) ) |
| 14 |
|
eqid |
|- ( S |`t D ) = ( S |`t D ) |
| 15 |
3 13 14
|
subsalsal |
|- ( ph -> ( S |`t D ) e. SAlg ) |
| 16 |
2 3 4 5 6
|
smfpimltxr |
|- ( ph -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |
| 17 |
2 3 4 5 6
|
smfpimgtxr |
|- ( ph -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) ) |
| 18 |
15 16 17
|
saluncld |
|- ( ph -> ( { x e. D | ( F ` x ) < A } u. { x e. D | A < ( F ` x ) } ) e. ( S |`t D ) ) |
| 19 |
11 18
|
eqeltrd |
|- ( ph -> { x e. D | ( F ` x ) =/= A } e. ( S |`t D ) ) |