| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfpimne.p |  |-  F/ x ph | 
						
							| 2 |  | smfpimne.x |  |-  F/_ x F | 
						
							| 3 |  | smfpimne.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 4 |  | smfpimne.f |  |-  ( ph -> F e. ( SMblFn ` S ) ) | 
						
							| 5 |  | smfpimne.d |  |-  D = dom F | 
						
							| 6 |  | smfpimne.a |  |-  ( ph -> A e. RR* ) | 
						
							| 7 | 3 4 5 | smff |  |-  ( ph -> F : D --> RR ) | 
						
							| 8 | 7 | ffvelcdmda |  |-  ( ( ph /\ x e. D ) -> ( F ` x ) e. RR ) | 
						
							| 9 | 8 | rexrd |  |-  ( ( ph /\ x e. D ) -> ( F ` x ) e. RR* ) | 
						
							| 10 | 6 | adantr |  |-  ( ( ph /\ x e. D ) -> A e. RR* ) | 
						
							| 11 | 1 9 10 | pimxrneun |  |-  ( ph -> { x e. D | ( F ` x ) =/= A } = ( { x e. D | ( F ` x ) < A } u. { x e. D | A < ( F ` x ) } ) ) | 
						
							| 12 | 3 4 5 | smfdmss |  |-  ( ph -> D C_ U. S ) | 
						
							| 13 | 3 12 | subsaluni |  |-  ( ph -> D e. ( S |`t D ) ) | 
						
							| 14 |  | eqid |  |-  ( S |`t D ) = ( S |`t D ) | 
						
							| 15 | 3 13 14 | subsalsal |  |-  ( ph -> ( S |`t D ) e. SAlg ) | 
						
							| 16 | 2 3 4 5 6 | smfpimltxr |  |-  ( ph -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) | 
						
							| 17 | 2 3 4 5 6 | smfpimgtxr |  |-  ( ph -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) ) | 
						
							| 18 | 15 16 17 | saluncld |  |-  ( ph -> ( { x e. D | ( F ` x ) < A } u. { x e. D | A < ( F ` x ) } ) e. ( S |`t D ) ) | 
						
							| 19 | 11 18 | eqeltrd |  |-  ( ph -> { x e. D | ( F ` x ) =/= A } e. ( S |`t D ) ) |