Metamath Proof Explorer


Theorem smfpimne

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of reals that are different from a value in the extended reals is in the subspace of sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses smfpimne.p
|- F/ x ph
smfpimne.x
|- F/_ x F
smfpimne.s
|- ( ph -> S e. SAlg )
smfpimne.f
|- ( ph -> F e. ( SMblFn ` S ) )
smfpimne.d
|- D = dom F
smfpimne.a
|- ( ph -> A e. RR* )
Assertion smfpimne
|- ( ph -> { x e. D | ( F ` x ) =/= A } e. ( S |`t D ) )

Proof

Step Hyp Ref Expression
1 smfpimne.p
 |-  F/ x ph
2 smfpimne.x
 |-  F/_ x F
3 smfpimne.s
 |-  ( ph -> S e. SAlg )
4 smfpimne.f
 |-  ( ph -> F e. ( SMblFn ` S ) )
5 smfpimne.d
 |-  D = dom F
6 smfpimne.a
 |-  ( ph -> A e. RR* )
7 3 4 5 smff
 |-  ( ph -> F : D --> RR )
8 7 ffvelcdmda
 |-  ( ( ph /\ x e. D ) -> ( F ` x ) e. RR )
9 8 rexrd
 |-  ( ( ph /\ x e. D ) -> ( F ` x ) e. RR* )
10 6 adantr
 |-  ( ( ph /\ x e. D ) -> A e. RR* )
11 1 9 10 pimxrneun
 |-  ( ph -> { x e. D | ( F ` x ) =/= A } = ( { x e. D | ( F ` x ) < A } u. { x e. D | A < ( F ` x ) } ) )
12 3 4 5 smfdmss
 |-  ( ph -> D C_ U. S )
13 3 12 subsaluni
 |-  ( ph -> D e. ( S |`t D ) )
14 eqid
 |-  ( S |`t D ) = ( S |`t D )
15 3 13 14 subsalsal
 |-  ( ph -> ( S |`t D ) e. SAlg )
16 2 3 4 5 6 smfpimltxr
 |-  ( ph -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) )
17 2 3 4 5 6 smfpimgtxr
 |-  ( ph -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) )
18 15 16 17 saluncld
 |-  ( ph -> ( { x e. D | ( F ` x ) < A } u. { x e. D | A < ( F ` x ) } ) e. ( S |`t D ) )
19 11 18 eqeltrd
 |-  ( ph -> { x e. D | ( F ` x ) =/= A } e. ( S |`t D ) )