Metamath Proof Explorer


Theorem smfpimne2

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of reals that are different from a value is in the subspace sigma-algebra induced by its domain. Notice that A is not assumed to be an extended real. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses smfpimne2.p
|- F/ x ph
smfpimne2.x
|- F/_ x F
smfpimne2.s
|- ( ph -> S e. SAlg )
smfpimne2.f
|- ( ph -> F e. ( SMblFn ` S ) )
smfpimne2.d
|- D = dom F
Assertion smfpimne2
|- ( ph -> { x e. D | ( F ` x ) =/= A } e. ( S |`t D ) )

Proof

Step Hyp Ref Expression
1 smfpimne2.p
 |-  F/ x ph
2 smfpimne2.x
 |-  F/_ x F
3 smfpimne2.s
 |-  ( ph -> S e. SAlg )
4 smfpimne2.f
 |-  ( ph -> F e. ( SMblFn ` S ) )
5 smfpimne2.d
 |-  D = dom F
6 nfv
 |-  F/ x A e. RR*
7 1 6 nfan
 |-  F/ x ( ph /\ A e. RR* )
8 3 adantr
 |-  ( ( ph /\ A e. RR* ) -> S e. SAlg )
9 4 adantr
 |-  ( ( ph /\ A e. RR* ) -> F e. ( SMblFn ` S ) )
10 simpr
 |-  ( ( ph /\ A e. RR* ) -> A e. RR* )
11 7 2 8 9 5 10 smfpimne
 |-  ( ( ph /\ A e. RR* ) -> { x e. D | ( F ` x ) =/= A } e. ( S |`t D ) )
12 2 nfdm
 |-  F/_ x dom F
13 5 12 nfcxfr
 |-  F/_ x D
14 13 ssrab2f
 |-  { x e. D | ( F ` x ) =/= A } C_ D
15 14 a1i
 |-  ( ( ph /\ -. A e. RR* ) -> { x e. D | ( F ` x ) =/= A } C_ D )
16 nfv
 |-  F/ x -. A e. RR*
17 1 16 nfan
 |-  F/ x ( ph /\ -. A e. RR* )
18 ssidd
 |-  ( ( ph /\ -. A e. RR* ) -> D C_ D )
19 nne
 |-  ( -. ( F ` x ) =/= A <-> ( F ` x ) = A )
20 simpr
 |-  ( ( ( ph /\ x e. D ) /\ ( F ` x ) = A ) -> ( F ` x ) = A )
21 3 4 5 smff
 |-  ( ph -> F : D --> RR )
22 21 ffvelcdmda
 |-  ( ( ph /\ x e. D ) -> ( F ` x ) e. RR )
23 22 rexrd
 |-  ( ( ph /\ x e. D ) -> ( F ` x ) e. RR* )
24 23 adantr
 |-  ( ( ( ph /\ x e. D ) /\ ( F ` x ) = A ) -> ( F ` x ) e. RR* )
25 20 24 eqeltrrd
 |-  ( ( ( ph /\ x e. D ) /\ ( F ` x ) = A ) -> A e. RR* )
26 19 25 sylan2b
 |-  ( ( ( ph /\ x e. D ) /\ -. ( F ` x ) =/= A ) -> A e. RR* )
27 26 adantllr
 |-  ( ( ( ( ph /\ -. A e. RR* ) /\ x e. D ) /\ -. ( F ` x ) =/= A ) -> A e. RR* )
28 simpllr
 |-  ( ( ( ( ph /\ -. A e. RR* ) /\ x e. D ) /\ -. ( F ` x ) =/= A ) -> -. A e. RR* )
29 27 28 condan
 |-  ( ( ( ph /\ -. A e. RR* ) /\ x e. D ) -> ( F ` x ) =/= A )
30 13 13 17 18 29 ssrabdf
 |-  ( ( ph /\ -. A e. RR* ) -> D C_ { x e. D | ( F ` x ) =/= A } )
31 15 30 eqssd
 |-  ( ( ph /\ -. A e. RR* ) -> { x e. D | ( F ` x ) =/= A } = D )
32 3 4 5 smfdmss
 |-  ( ph -> D C_ U. S )
33 3 32 subsaluni
 |-  ( ph -> D e. ( S |`t D ) )
34 33 adantr
 |-  ( ( ph /\ -. A e. RR* ) -> D e. ( S |`t D ) )
35 31 34 eqeltrd
 |-  ( ( ph /\ -. A e. RR* ) -> { x e. D | ( F ` x ) =/= A } e. ( S |`t D ) )
36 11 35 pm2.61dan
 |-  ( ph -> { x e. D | ( F ` x ) =/= A } e. ( S |`t D ) )