| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfpimne2.p |  |-  F/ x ph | 
						
							| 2 |  | smfpimne2.x |  |-  F/_ x F | 
						
							| 3 |  | smfpimne2.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 4 |  | smfpimne2.f |  |-  ( ph -> F e. ( SMblFn ` S ) ) | 
						
							| 5 |  | smfpimne2.d |  |-  D = dom F | 
						
							| 6 |  | nfv |  |-  F/ x A e. RR* | 
						
							| 7 | 1 6 | nfan |  |-  F/ x ( ph /\ A e. RR* ) | 
						
							| 8 | 3 | adantr |  |-  ( ( ph /\ A e. RR* ) -> S e. SAlg ) | 
						
							| 9 | 4 | adantr |  |-  ( ( ph /\ A e. RR* ) -> F e. ( SMblFn ` S ) ) | 
						
							| 10 |  | simpr |  |-  ( ( ph /\ A e. RR* ) -> A e. RR* ) | 
						
							| 11 | 7 2 8 9 5 10 | smfpimne |  |-  ( ( ph /\ A e. RR* ) -> { x e. D | ( F ` x ) =/= A } e. ( S |`t D ) ) | 
						
							| 12 | 2 | nfdm |  |-  F/_ x dom F | 
						
							| 13 | 5 12 | nfcxfr |  |-  F/_ x D | 
						
							| 14 | 13 | ssrab2f |  |-  { x e. D | ( F ` x ) =/= A } C_ D | 
						
							| 15 | 14 | a1i |  |-  ( ( ph /\ -. A e. RR* ) -> { x e. D | ( F ` x ) =/= A } C_ D ) | 
						
							| 16 |  | nfv |  |-  F/ x -. A e. RR* | 
						
							| 17 | 1 16 | nfan |  |-  F/ x ( ph /\ -. A e. RR* ) | 
						
							| 18 |  | ssidd |  |-  ( ( ph /\ -. A e. RR* ) -> D C_ D ) | 
						
							| 19 |  | nne |  |-  ( -. ( F ` x ) =/= A <-> ( F ` x ) = A ) | 
						
							| 20 |  | simpr |  |-  ( ( ( ph /\ x e. D ) /\ ( F ` x ) = A ) -> ( F ` x ) = A ) | 
						
							| 21 | 3 4 5 | smff |  |-  ( ph -> F : D --> RR ) | 
						
							| 22 | 21 | ffvelcdmda |  |-  ( ( ph /\ x e. D ) -> ( F ` x ) e. RR ) | 
						
							| 23 | 22 | rexrd |  |-  ( ( ph /\ x e. D ) -> ( F ` x ) e. RR* ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ( ph /\ x e. D ) /\ ( F ` x ) = A ) -> ( F ` x ) e. RR* ) | 
						
							| 25 | 20 24 | eqeltrrd |  |-  ( ( ( ph /\ x e. D ) /\ ( F ` x ) = A ) -> A e. RR* ) | 
						
							| 26 | 19 25 | sylan2b |  |-  ( ( ( ph /\ x e. D ) /\ -. ( F ` x ) =/= A ) -> A e. RR* ) | 
						
							| 27 | 26 | adantllr |  |-  ( ( ( ( ph /\ -. A e. RR* ) /\ x e. D ) /\ -. ( F ` x ) =/= A ) -> A e. RR* ) | 
						
							| 28 |  | simpllr |  |-  ( ( ( ( ph /\ -. A e. RR* ) /\ x e. D ) /\ -. ( F ` x ) =/= A ) -> -. A e. RR* ) | 
						
							| 29 | 27 28 | condan |  |-  ( ( ( ph /\ -. A e. RR* ) /\ x e. D ) -> ( F ` x ) =/= A ) | 
						
							| 30 | 13 13 17 18 29 | ssrabdf |  |-  ( ( ph /\ -. A e. RR* ) -> D C_ { x e. D | ( F ` x ) =/= A } ) | 
						
							| 31 | 15 30 | eqssd |  |-  ( ( ph /\ -. A e. RR* ) -> { x e. D | ( F ` x ) =/= A } = D ) | 
						
							| 32 | 3 4 5 | smfdmss |  |-  ( ph -> D C_ U. S ) | 
						
							| 33 | 3 32 | subsaluni |  |-  ( ph -> D e. ( S |`t D ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ph /\ -. A e. RR* ) -> D e. ( S |`t D ) ) | 
						
							| 35 | 31 34 | eqeltrd |  |-  ( ( ph /\ -. A e. RR* ) -> { x e. D | ( F ` x ) =/= A } e. ( S |`t D ) ) | 
						
							| 36 | 11 35 | pm2.61dan |  |-  ( ph -> { x e. D | ( F ` x ) =/= A } e. ( S |`t D ) ) |