| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfpimne2.p |
|- F/ x ph |
| 2 |
|
smfpimne2.x |
|- F/_ x F |
| 3 |
|
smfpimne2.s |
|- ( ph -> S e. SAlg ) |
| 4 |
|
smfpimne2.f |
|- ( ph -> F e. ( SMblFn ` S ) ) |
| 5 |
|
smfpimne2.d |
|- D = dom F |
| 6 |
|
nfv |
|- F/ x A e. RR* |
| 7 |
1 6
|
nfan |
|- F/ x ( ph /\ A e. RR* ) |
| 8 |
3
|
adantr |
|- ( ( ph /\ A e. RR* ) -> S e. SAlg ) |
| 9 |
4
|
adantr |
|- ( ( ph /\ A e. RR* ) -> F e. ( SMblFn ` S ) ) |
| 10 |
|
simpr |
|- ( ( ph /\ A e. RR* ) -> A e. RR* ) |
| 11 |
7 2 8 9 5 10
|
smfpimne |
|- ( ( ph /\ A e. RR* ) -> { x e. D | ( F ` x ) =/= A } e. ( S |`t D ) ) |
| 12 |
2
|
nfdm |
|- F/_ x dom F |
| 13 |
5 12
|
nfcxfr |
|- F/_ x D |
| 14 |
13
|
ssrab2f |
|- { x e. D | ( F ` x ) =/= A } C_ D |
| 15 |
14
|
a1i |
|- ( ( ph /\ -. A e. RR* ) -> { x e. D | ( F ` x ) =/= A } C_ D ) |
| 16 |
|
nfv |
|- F/ x -. A e. RR* |
| 17 |
1 16
|
nfan |
|- F/ x ( ph /\ -. A e. RR* ) |
| 18 |
|
ssidd |
|- ( ( ph /\ -. A e. RR* ) -> D C_ D ) |
| 19 |
|
nne |
|- ( -. ( F ` x ) =/= A <-> ( F ` x ) = A ) |
| 20 |
|
simpr |
|- ( ( ( ph /\ x e. D ) /\ ( F ` x ) = A ) -> ( F ` x ) = A ) |
| 21 |
3 4 5
|
smff |
|- ( ph -> F : D --> RR ) |
| 22 |
21
|
ffvelcdmda |
|- ( ( ph /\ x e. D ) -> ( F ` x ) e. RR ) |
| 23 |
22
|
rexrd |
|- ( ( ph /\ x e. D ) -> ( F ` x ) e. RR* ) |
| 24 |
23
|
adantr |
|- ( ( ( ph /\ x e. D ) /\ ( F ` x ) = A ) -> ( F ` x ) e. RR* ) |
| 25 |
20 24
|
eqeltrrd |
|- ( ( ( ph /\ x e. D ) /\ ( F ` x ) = A ) -> A e. RR* ) |
| 26 |
19 25
|
sylan2b |
|- ( ( ( ph /\ x e. D ) /\ -. ( F ` x ) =/= A ) -> A e. RR* ) |
| 27 |
26
|
adantllr |
|- ( ( ( ( ph /\ -. A e. RR* ) /\ x e. D ) /\ -. ( F ` x ) =/= A ) -> A e. RR* ) |
| 28 |
|
simpllr |
|- ( ( ( ( ph /\ -. A e. RR* ) /\ x e. D ) /\ -. ( F ` x ) =/= A ) -> -. A e. RR* ) |
| 29 |
27 28
|
condan |
|- ( ( ( ph /\ -. A e. RR* ) /\ x e. D ) -> ( F ` x ) =/= A ) |
| 30 |
13 13 17 18 29
|
ssrabdf |
|- ( ( ph /\ -. A e. RR* ) -> D C_ { x e. D | ( F ` x ) =/= A } ) |
| 31 |
15 30
|
eqssd |
|- ( ( ph /\ -. A e. RR* ) -> { x e. D | ( F ` x ) =/= A } = D ) |
| 32 |
3 4 5
|
smfdmss |
|- ( ph -> D C_ U. S ) |
| 33 |
3 32
|
subsaluni |
|- ( ph -> D e. ( S |`t D ) ) |
| 34 |
33
|
adantr |
|- ( ( ph /\ -. A e. RR* ) -> D e. ( S |`t D ) ) |
| 35 |
31 34
|
eqeltrd |
|- ( ( ph /\ -. A e. RR* ) -> { x e. D | ( F ` x ) =/= A } e. ( S |`t D ) ) |
| 36 |
11 35
|
pm2.61dan |
|- ( ph -> { x e. D | ( F ` x ) =/= A } e. ( S |`t D ) ) |