Description: If a functions and a sigma-measurable function have domains in the sigma-algebra, the domain of the division of the two functions is in the sigma-algebra. This is the third statement of Proposition 121H of Fremlin1 p. 39 . Note: While the theorem in the book assumes both functions are sigma-measurable, this assumption is unnecessary for the part concerning their division, for the function at the numerator. It is required only for the function at the denominator. (Contributed by Glauco Siliprandi, 5-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smfdivdmmbl2.1 | |- F/ x ph | |
| smfdivdmmbl2.2 | |- F/_ x F | ||
| smfdivdmmbl2.3 | |- F/_ x G | ||
| smfdivdmmbl2.4 | |- ( ph -> S e. SAlg ) | ||
| smfdivdmmbl2.5 | |- ( ph -> F : A --> V ) | ||
| smfdivdmmbl2.6 | |- ( ph -> G e. ( SMblFn ` S ) ) | ||
| smfdivdmmbl2.7 | |- ( ph -> A e. S ) | ||
| smfdivdmmbl2.8 | |- ( ph -> dom G e. S ) | ||
| smfdivdmmbl2.9 | |- D = { x e. dom G | ( G ` x ) =/= 0 } | ||
| smfdivdmmbl2.10 | |- H = ( x e. ( dom F i^i D ) |-> ( ( F ` x ) / ( G ` x ) ) ) | ||
| Assertion | smfdivdmmbl2 | |- ( ph -> dom H e. S ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | smfdivdmmbl2.1 | |- F/ x ph | |
| 2 | smfdivdmmbl2.2 | |- F/_ x F | |
| 3 | smfdivdmmbl2.3 | |- F/_ x G | |
| 4 | smfdivdmmbl2.4 | |- ( ph -> S e. SAlg ) | |
| 5 | smfdivdmmbl2.5 | |- ( ph -> F : A --> V ) | |
| 6 | smfdivdmmbl2.6 | |- ( ph -> G e. ( SMblFn ` S ) ) | |
| 7 | smfdivdmmbl2.7 | |- ( ph -> A e. S ) | |
| 8 | smfdivdmmbl2.8 | |- ( ph -> dom G e. S ) | |
| 9 | smfdivdmmbl2.9 |  |-  D = { x e. dom G | ( G ` x ) =/= 0 } | |
| 10 | smfdivdmmbl2.10 | |- H = ( x e. ( dom F i^i D ) |-> ( ( F ` x ) / ( G ` x ) ) ) | |
| 11 | 2 | nfdm | |- F/_ x dom F | 
| 12 | nfrab1 |  |-  F/_ x { x e. dom G | ( G ` x ) =/= 0 } | |
| 13 | 9 12 | nfcxfr | |- F/_ x D | 
| 14 | 11 13 | nfin | |- F/_ x ( dom F i^i D ) | 
| 15 | ovex | |- ( ( F ` x ) / ( G ` x ) ) e. _V | |
| 16 | 14 15 10 | dmmptif | |- dom H = ( dom F i^i D ) | 
| 17 | 5 | fdmd | |- ( ph -> dom F = A ) | 
| 18 | 17 7 | eqeltrd | |- ( ph -> dom F e. S ) | 
| 19 | 4 8 | salrestss | |- ( ph -> ( S |`t dom G ) C_ S ) | 
| 20 | eqid | |- dom G = dom G | |
| 21 | 1 3 4 6 20 | smfpimne2 |  |-  ( ph -> { x e. dom G | ( G ` x ) =/= 0 } e. ( S |`t dom G ) ) | 
| 22 | 9 21 | eqeltrid | |- ( ph -> D e. ( S |`t dom G ) ) | 
| 23 | 19 22 | sseldd | |- ( ph -> D e. S ) | 
| 24 | 4 18 23 | salincld | |- ( ph -> ( dom F i^i D ) e. S ) | 
| 25 | 16 24 | eqeltrid | |- ( ph -> dom H e. S ) |