Description: If a functions and a sigma-measurable function have domains in the sigma-algebra, the domain of the division of the two functions is in the sigma-algebra. This is the third statement of Proposition 121H of Fremlin1 p. 39 . Note: While the theorem in the book assumes both functions are sigma-measurable, this assumption is unnecessary for the part concerning their division, for the function at the numerator. It is required only for the function at the denominator. (Contributed by Glauco Siliprandi, 5-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smfdivdmmbl2.1 | |- F/ x ph |
|
smfdivdmmbl2.2 | |- F/_ x F |
||
smfdivdmmbl2.3 | |- F/_ x G |
||
smfdivdmmbl2.4 | |- ( ph -> S e. SAlg ) |
||
smfdivdmmbl2.5 | |- ( ph -> F : A --> V ) |
||
smfdivdmmbl2.6 | |- ( ph -> G e. ( SMblFn ` S ) ) |
||
smfdivdmmbl2.7 | |- ( ph -> A e. S ) |
||
smfdivdmmbl2.8 | |- ( ph -> dom G e. S ) |
||
smfdivdmmbl2.9 | |- D = { x e. dom G | ( G ` x ) =/= 0 } |
||
smfdivdmmbl2.10 | |- H = ( x e. ( dom F i^i D ) |-> ( ( F ` x ) / ( G ` x ) ) ) |
||
Assertion | smfdivdmmbl2 | |- ( ph -> dom H e. S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfdivdmmbl2.1 | |- F/ x ph |
|
2 | smfdivdmmbl2.2 | |- F/_ x F |
|
3 | smfdivdmmbl2.3 | |- F/_ x G |
|
4 | smfdivdmmbl2.4 | |- ( ph -> S e. SAlg ) |
|
5 | smfdivdmmbl2.5 | |- ( ph -> F : A --> V ) |
|
6 | smfdivdmmbl2.6 | |- ( ph -> G e. ( SMblFn ` S ) ) |
|
7 | smfdivdmmbl2.7 | |- ( ph -> A e. S ) |
|
8 | smfdivdmmbl2.8 | |- ( ph -> dom G e. S ) |
|
9 | smfdivdmmbl2.9 | |- D = { x e. dom G | ( G ` x ) =/= 0 } |
|
10 | smfdivdmmbl2.10 | |- H = ( x e. ( dom F i^i D ) |-> ( ( F ` x ) / ( G ` x ) ) ) |
|
11 | 2 | nfdm | |- F/_ x dom F |
12 | nfrab1 | |- F/_ x { x e. dom G | ( G ` x ) =/= 0 } |
|
13 | 9 12 | nfcxfr | |- F/_ x D |
14 | 11 13 | nfin | |- F/_ x ( dom F i^i D ) |
15 | ovex | |- ( ( F ` x ) / ( G ` x ) ) e. _V |
|
16 | 14 15 10 | dmmptif | |- dom H = ( dom F i^i D ) |
17 | 5 | fdmd | |- ( ph -> dom F = A ) |
18 | 17 7 | eqeltrd | |- ( ph -> dom F e. S ) |
19 | 4 8 | salrestss | |- ( ph -> ( S |`t dom G ) C_ S ) |
20 | eqid | |- dom G = dom G |
|
21 | 1 3 4 6 20 | smfpimne2 | |- ( ph -> { x e. dom G | ( G ` x ) =/= 0 } e. ( S |`t dom G ) ) |
22 | 9 21 | eqeltrid | |- ( ph -> D e. ( S |`t dom G ) ) |
23 | 19 22 | sseldd | |- ( ph -> D e. S ) |
24 | 4 18 23 | salincld | |- ( ph -> ( dom F i^i D ) e. S ) |
25 | 16 24 | eqeltrid | |- ( ph -> dom H e. S ) |