Metamath Proof Explorer


Theorem smfdivdmmbl2

Description: If a functions and a sigma-measurable function have domains in the sigma-algebra, the domain of the division of the two functions is in the sigma-algebra. This is the third statement of Proposition 121H of Fremlin1 p. 39 . Note: While the theorem in the book assumes both functions are sigma-measurable, this assumption is unnecessary for the part concerning their division, for the function at the numerator. It is required only for the function at the denominator. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses smfdivdmmbl2.1
|- F/ x ph
smfdivdmmbl2.2
|- F/_ x F
smfdivdmmbl2.3
|- F/_ x G
smfdivdmmbl2.4
|- ( ph -> S e. SAlg )
smfdivdmmbl2.5
|- ( ph -> F : A --> V )
smfdivdmmbl2.6
|- ( ph -> G e. ( SMblFn ` S ) )
smfdivdmmbl2.7
|- ( ph -> A e. S )
smfdivdmmbl2.8
|- ( ph -> dom G e. S )
smfdivdmmbl2.9
|- D = { x e. dom G | ( G ` x ) =/= 0 }
smfdivdmmbl2.10
|- H = ( x e. ( dom F i^i D ) |-> ( ( F ` x ) / ( G ` x ) ) )
Assertion smfdivdmmbl2
|- ( ph -> dom H e. S )

Proof

Step Hyp Ref Expression
1 smfdivdmmbl2.1
 |-  F/ x ph
2 smfdivdmmbl2.2
 |-  F/_ x F
3 smfdivdmmbl2.3
 |-  F/_ x G
4 smfdivdmmbl2.4
 |-  ( ph -> S e. SAlg )
5 smfdivdmmbl2.5
 |-  ( ph -> F : A --> V )
6 smfdivdmmbl2.6
 |-  ( ph -> G e. ( SMblFn ` S ) )
7 smfdivdmmbl2.7
 |-  ( ph -> A e. S )
8 smfdivdmmbl2.8
 |-  ( ph -> dom G e. S )
9 smfdivdmmbl2.9
 |-  D = { x e. dom G | ( G ` x ) =/= 0 }
10 smfdivdmmbl2.10
 |-  H = ( x e. ( dom F i^i D ) |-> ( ( F ` x ) / ( G ` x ) ) )
11 2 nfdm
 |-  F/_ x dom F
12 nfrab1
 |-  F/_ x { x e. dom G | ( G ` x ) =/= 0 }
13 9 12 nfcxfr
 |-  F/_ x D
14 11 13 nfin
 |-  F/_ x ( dom F i^i D )
15 ovex
 |-  ( ( F ` x ) / ( G ` x ) ) e. _V
16 14 15 10 dmmptif
 |-  dom H = ( dom F i^i D )
17 5 fdmd
 |-  ( ph -> dom F = A )
18 17 7 eqeltrd
 |-  ( ph -> dom F e. S )
19 4 8 salrestss
 |-  ( ph -> ( S |`t dom G ) C_ S )
20 eqid
 |-  dom G = dom G
21 1 3 4 6 20 smfpimne2
 |-  ( ph -> { x e. dom G | ( G ` x ) =/= 0 } e. ( S |`t dom G ) )
22 9 21 eqeltrid
 |-  ( ph -> D e. ( S |`t dom G ) )
23 19 22 sseldd
 |-  ( ph -> D e. S )
24 4 18 23 salincld
 |-  ( ph -> ( dom F i^i D ) e. S )
25 16 24 eqeltrid
 |-  ( ph -> dom H e. S )