Metamath Proof Explorer


Theorem smfdivdmmbl2

Description: If a functions and a sigma-measurable function have domains in the sigma-algebra, the domain of the division of the two functions is in the sigma-algebra. This is the third statement of Proposition 121H of Fremlin1 p. 39 . Note: While the theorem in the book assumes both functions are sigma-measurable, this assumption is unnecessary for the part concerning their division, for the function at the numerator. It is required only for the function at the denominator. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses smfdivdmmbl2.1 x φ
smfdivdmmbl2.2 _ x F
smfdivdmmbl2.3 _ x G
smfdivdmmbl2.4 φ S SAlg
smfdivdmmbl2.5 φ F : A V
smfdivdmmbl2.6 φ G SMblFn S
smfdivdmmbl2.7 φ A S
smfdivdmmbl2.8 φ dom G S
smfdivdmmbl2.9 D = x dom G | G x 0
smfdivdmmbl2.10 H = x dom F D F x G x
Assertion smfdivdmmbl2 φ dom H S

Proof

Step Hyp Ref Expression
1 smfdivdmmbl2.1 x φ
2 smfdivdmmbl2.2 _ x F
3 smfdivdmmbl2.3 _ x G
4 smfdivdmmbl2.4 φ S SAlg
5 smfdivdmmbl2.5 φ F : A V
6 smfdivdmmbl2.6 φ G SMblFn S
7 smfdivdmmbl2.7 φ A S
8 smfdivdmmbl2.8 φ dom G S
9 smfdivdmmbl2.9 D = x dom G | G x 0
10 smfdivdmmbl2.10 H = x dom F D F x G x
11 2 nfdm _ x dom F
12 nfrab1 _ x x dom G | G x 0
13 9 12 nfcxfr _ x D
14 11 13 nfin _ x dom F D
15 ovex F x G x V
16 14 15 10 dmmptif dom H = dom F D
17 5 fdmd φ dom F = A
18 17 7 eqeltrd φ dom F S
19 4 8 salrestss φ S 𝑡 dom G S
20 eqid dom G = dom G
21 1 3 4 6 20 smfpimne2 φ x dom G | G x 0 S 𝑡 dom G
22 9 21 eqeltrid φ D S 𝑡 dom G
23 19 22 sseldd φ D S
24 4 18 23 salincld φ dom F D S
25 16 24 eqeltrid φ dom H S