Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of reals that are different from a value is in the subspace sigma-algebra induced by its domain. Notice that A is not assumed to be an extended real. (Contributed by Glauco Siliprandi, 5-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smfpimne2.p | |
|
smfpimne2.x | |
||
smfpimne2.s | |
||
smfpimne2.f | |
||
smfpimne2.d | |
||
Assertion | smfpimne2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpimne2.p | |
|
2 | smfpimne2.x | |
|
3 | smfpimne2.s | |
|
4 | smfpimne2.f | |
|
5 | smfpimne2.d | |
|
6 | nfv | |
|
7 | 1 6 | nfan | |
8 | 3 | adantr | |
9 | 4 | adantr | |
10 | simpr | |
|
11 | 7 2 8 9 5 10 | smfpimne | |
12 | 2 | nfdm | |
13 | 5 12 | nfcxfr | |
14 | 13 | ssrab2f | |
15 | 14 | a1i | |
16 | nfv | |
|
17 | 1 16 | nfan | |
18 | ssidd | |
|
19 | nne | |
|
20 | simpr | |
|
21 | 3 4 5 | smff | |
22 | 21 | ffvelcdmda | |
23 | 22 | rexrd | |
24 | 23 | adantr | |
25 | 20 24 | eqeltrrd | |
26 | 19 25 | sylan2b | |
27 | 26 | adantllr | |
28 | simpllr | |
|
29 | 27 28 | condan | |
30 | 13 13 17 18 29 | ssrabdf | |
31 | 15 30 | eqssd | |
32 | 3 4 5 | smfdmss | |
33 | 3 32 | subsaluni | |
34 | 33 | adantr | |
35 | 31 34 | eqeltrd | |
36 | 11 35 | pm2.61dan | |