Metamath Proof Explorer


Theorem smfpimne2

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of reals that are different from a value is in the subspace sigma-algebra induced by its domain. Notice that A is not assumed to be an extended real. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses smfpimne2.p xφ
smfpimne2.x _xF
smfpimne2.s φSSAlg
smfpimne2.f φFSMblFnS
smfpimne2.d D=domF
Assertion smfpimne2 φxD|FxAS𝑡D

Proof

Step Hyp Ref Expression
1 smfpimne2.p xφ
2 smfpimne2.x _xF
3 smfpimne2.s φSSAlg
4 smfpimne2.f φFSMblFnS
5 smfpimne2.d D=domF
6 nfv xA*
7 1 6 nfan xφA*
8 3 adantr φA*SSAlg
9 4 adantr φA*FSMblFnS
10 simpr φA*A*
11 7 2 8 9 5 10 smfpimne φA*xD|FxAS𝑡D
12 2 nfdm _xdomF
13 5 12 nfcxfr _xD
14 13 ssrab2f xD|FxAD
15 14 a1i φ¬A*xD|FxAD
16 nfv x¬A*
17 1 16 nfan xφ¬A*
18 ssidd φ¬A*DD
19 nne ¬FxAFx=A
20 simpr φxDFx=AFx=A
21 3 4 5 smff φF:D
22 21 ffvelcdmda φxDFx
23 22 rexrd φxDFx*
24 23 adantr φxDFx=AFx*
25 20 24 eqeltrrd φxDFx=AA*
26 19 25 sylan2b φxD¬FxAA*
27 26 adantllr φ¬A*xD¬FxAA*
28 simpllr φ¬A*xD¬FxA¬A*
29 27 28 condan φ¬A*xDFxA
30 13 13 17 18 29 ssrabdf φ¬A*DxD|FxA
31 15 30 eqssd φ¬A*xD|FxA=D
32 3 4 5 smfdmss φDS
33 3 32 subsaluni φDS𝑡D
34 33 adantr φ¬A*DS𝑡D
35 31 34 eqeltrd φ¬A*xD|FxAS𝑡D
36 11 35 pm2.61dan φxD|FxAS𝑡D