Metamath Proof Explorer


Theorem smfpimne

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of reals that are different from a value in the extended reals is in the subspace of sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses smfpimne.p x φ
smfpimne.x _ x F
smfpimne.s φ S SAlg
smfpimne.f φ F SMblFn S
smfpimne.d D = dom F
smfpimne.a φ A *
Assertion smfpimne φ x D | F x A S 𝑡 D

Proof

Step Hyp Ref Expression
1 smfpimne.p x φ
2 smfpimne.x _ x F
3 smfpimne.s φ S SAlg
4 smfpimne.f φ F SMblFn S
5 smfpimne.d D = dom F
6 smfpimne.a φ A *
7 3 4 5 smff φ F : D
8 7 ffvelcdmda φ x D F x
9 8 rexrd φ x D F x *
10 6 adantr φ x D A *
11 1 9 10 pimxrneun φ x D | F x A = x D | F x < A x D | A < F x
12 3 4 5 smfdmss φ D S
13 3 12 subsaluni φ D S 𝑡 D
14 eqid S 𝑡 D = S 𝑡 D
15 3 13 14 subsalsal φ S 𝑡 D SAlg
16 2 3 4 5 6 smfpimltxr φ x D | F x < A S 𝑡 D
17 2 3 4 5 6 smfpimgtxr φ x D | A < F x S 𝑡 D
18 15 16 17 saluncld φ x D | F x < A x D | A < F x S 𝑡 D
19 11 18 eqeltrd φ x D | F x A S 𝑡 D