Step |
Hyp |
Ref |
Expression |
1 |
|
smfpimne.p |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
smfpimne.x |
⊢ Ⅎ 𝑥 𝐹 |
3 |
|
smfpimne.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
4 |
|
smfpimne.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
5 |
|
smfpimne.d |
⊢ 𝐷 = dom 𝐹 |
6 |
|
smfpimne.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
7 |
3 4 5
|
smff |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℝ ) |
8 |
7
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
9 |
8
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
10 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐴 ∈ ℝ* ) |
11 |
1 9 10
|
pimxrneun |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝐴 } = ( { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } ∪ { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } ) ) |
12 |
3 4 5
|
smfdmss |
⊢ ( 𝜑 → 𝐷 ⊆ ∪ 𝑆 ) |
13 |
3 12
|
subsaluni |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝑆 ↾t 𝐷 ) ) |
14 |
|
eqid |
⊢ ( 𝑆 ↾t 𝐷 ) = ( 𝑆 ↾t 𝐷 ) |
15 |
3 13 14
|
subsalsal |
⊢ ( 𝜑 → ( 𝑆 ↾t 𝐷 ) ∈ SAlg ) |
16 |
2 3 4 5 6
|
smfpimltxr |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
17 |
2 3 4 5 6
|
smfpimgtxr |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
18 |
15 16 17
|
saluncld |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } ∪ { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } ) ∈ ( 𝑆 ↾t 𝐷 ) ) |
19 |
11 18
|
eqeltrd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |