| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfpimne.p | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | smfpimne.x | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 3 |  | smfpimne.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 4 |  | smfpimne.f | ⊢ ( 𝜑  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 5 |  | smfpimne.d | ⊢ 𝐷  =  dom  𝐹 | 
						
							| 6 |  | smfpimne.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 7 | 3 4 5 | smff | ⊢ ( 𝜑  →  𝐹 : 𝐷 ⟶ ℝ ) | 
						
							| 8 | 7 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 9 | 8 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 10 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝐴  ∈  ℝ* ) | 
						
							| 11 | 1 9 10 | pimxrneun | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  ≠  𝐴 }  =  ( { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝐴 }  ∪  { 𝑥  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑥 ) } ) ) | 
						
							| 12 | 3 4 5 | smfdmss | ⊢ ( 𝜑  →  𝐷  ⊆  ∪  𝑆 ) | 
						
							| 13 | 3 12 | subsaluni | ⊢ ( 𝜑  →  𝐷  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 14 |  | eqid | ⊢ ( 𝑆  ↾t  𝐷 )  =  ( 𝑆  ↾t  𝐷 ) | 
						
							| 15 | 3 13 14 | subsalsal | ⊢ ( 𝜑  →  ( 𝑆  ↾t  𝐷 )  ∈  SAlg ) | 
						
							| 16 | 2 3 4 5 6 | smfpimltxr | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝐴 }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 17 | 2 3 4 5 6 | smfpimgtxr | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 18 | 15 16 17 | saluncld | ⊢ ( 𝜑  →  ( { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝐴 }  ∪  { 𝑥  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑥 ) } )  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 19 | 11 18 | eqeltrd | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  ≠  𝐴 }  ∈  ( 𝑆  ↾t  𝐷 ) ) |