Metamath Proof Explorer


Theorem smfpimne

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of reals that are different from a value in the extended reals is in the subspace of sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses smfpimne.p 𝑥 𝜑
smfpimne.x 𝑥 𝐹
smfpimne.s ( 𝜑𝑆 ∈ SAlg )
smfpimne.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
smfpimne.d 𝐷 = dom 𝐹
smfpimne.a ( 𝜑𝐴 ∈ ℝ* )
Assertion smfpimne ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≠ 𝐴 } ∈ ( 𝑆t 𝐷 ) )

Proof

Step Hyp Ref Expression
1 smfpimne.p 𝑥 𝜑
2 smfpimne.x 𝑥 𝐹
3 smfpimne.s ( 𝜑𝑆 ∈ SAlg )
4 smfpimne.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
5 smfpimne.d 𝐷 = dom 𝐹
6 smfpimne.a ( 𝜑𝐴 ∈ ℝ* )
7 3 4 5 smff ( 𝜑𝐹 : 𝐷 ⟶ ℝ )
8 7 ffvelcdmda ( ( 𝜑𝑥𝐷 ) → ( 𝐹𝑥 ) ∈ ℝ )
9 8 rexrd ( ( 𝜑𝑥𝐷 ) → ( 𝐹𝑥 ) ∈ ℝ* )
10 6 adantr ( ( 𝜑𝑥𝐷 ) → 𝐴 ∈ ℝ* )
11 1 9 10 pimxrneun ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≠ 𝐴 } = ( { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∪ { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } ) )
12 3 4 5 smfdmss ( 𝜑𝐷 𝑆 )
13 3 12 subsaluni ( 𝜑𝐷 ∈ ( 𝑆t 𝐷 ) )
14 eqid ( 𝑆t 𝐷 ) = ( 𝑆t 𝐷 )
15 3 13 14 subsalsal ( 𝜑 → ( 𝑆t 𝐷 ) ∈ SAlg )
16 2 3 4 5 6 smfpimltxr ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∈ ( 𝑆t 𝐷 ) )
17 2 3 4 5 6 smfpimgtxr ( 𝜑 → { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) )
18 15 16 17 saluncld ( 𝜑 → ( { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∪ { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } ) ∈ ( 𝑆t 𝐷 ) )
19 11 18 eqeltrd ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≠ 𝐴 } ∈ ( 𝑆t 𝐷 ) )