Metamath Proof Explorer


Theorem smfpimne2

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of reals that are different from a value is in the subspace sigma-algebra induced by its domain. Notice that A is not assumed to be an extended real. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses smfpimne2.p 𝑥 𝜑
smfpimne2.x 𝑥 𝐹
smfpimne2.s ( 𝜑𝑆 ∈ SAlg )
smfpimne2.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
smfpimne2.d 𝐷 = dom 𝐹
Assertion smfpimne2 ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≠ 𝐴 } ∈ ( 𝑆t 𝐷 ) )

Proof

Step Hyp Ref Expression
1 smfpimne2.p 𝑥 𝜑
2 smfpimne2.x 𝑥 𝐹
3 smfpimne2.s ( 𝜑𝑆 ∈ SAlg )
4 smfpimne2.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
5 smfpimne2.d 𝐷 = dom 𝐹
6 nfv 𝑥 𝐴 ∈ ℝ*
7 1 6 nfan 𝑥 ( 𝜑𝐴 ∈ ℝ* )
8 3 adantr ( ( 𝜑𝐴 ∈ ℝ* ) → 𝑆 ∈ SAlg )
9 4 adantr ( ( 𝜑𝐴 ∈ ℝ* ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
10 simpr ( ( 𝜑𝐴 ∈ ℝ* ) → 𝐴 ∈ ℝ* )
11 7 2 8 9 5 10 smfpimne ( ( 𝜑𝐴 ∈ ℝ* ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≠ 𝐴 } ∈ ( 𝑆t 𝐷 ) )
12 2 nfdm 𝑥 dom 𝐹
13 5 12 nfcxfr 𝑥 𝐷
14 13 ssrab2f { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≠ 𝐴 } ⊆ 𝐷
15 14 a1i ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ* ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≠ 𝐴 } ⊆ 𝐷 )
16 nfv 𝑥 ¬ 𝐴 ∈ ℝ*
17 1 16 nfan 𝑥 ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ* )
18 ssidd ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ* ) → 𝐷𝐷 )
19 nne ( ¬ ( 𝐹𝑥 ) ≠ 𝐴 ↔ ( 𝐹𝑥 ) = 𝐴 )
20 simpr ( ( ( 𝜑𝑥𝐷 ) ∧ ( 𝐹𝑥 ) = 𝐴 ) → ( 𝐹𝑥 ) = 𝐴 )
21 3 4 5 smff ( 𝜑𝐹 : 𝐷 ⟶ ℝ )
22 21 ffvelcdmda ( ( 𝜑𝑥𝐷 ) → ( 𝐹𝑥 ) ∈ ℝ )
23 22 rexrd ( ( 𝜑𝑥𝐷 ) → ( 𝐹𝑥 ) ∈ ℝ* )
24 23 adantr ( ( ( 𝜑𝑥𝐷 ) ∧ ( 𝐹𝑥 ) = 𝐴 ) → ( 𝐹𝑥 ) ∈ ℝ* )
25 20 24 eqeltrrd ( ( ( 𝜑𝑥𝐷 ) ∧ ( 𝐹𝑥 ) = 𝐴 ) → 𝐴 ∈ ℝ* )
26 19 25 sylan2b ( ( ( 𝜑𝑥𝐷 ) ∧ ¬ ( 𝐹𝑥 ) ≠ 𝐴 ) → 𝐴 ∈ ℝ* )
27 26 adantllr ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ* ) ∧ 𝑥𝐷 ) ∧ ¬ ( 𝐹𝑥 ) ≠ 𝐴 ) → 𝐴 ∈ ℝ* )
28 simpllr ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ* ) ∧ 𝑥𝐷 ) ∧ ¬ ( 𝐹𝑥 ) ≠ 𝐴 ) → ¬ 𝐴 ∈ ℝ* )
29 27 28 condan ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ* ) ∧ 𝑥𝐷 ) → ( 𝐹𝑥 ) ≠ 𝐴 )
30 13 13 17 18 29 ssrabdf ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ* ) → 𝐷 ⊆ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≠ 𝐴 } )
31 15 30 eqssd ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ* ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≠ 𝐴 } = 𝐷 )
32 3 4 5 smfdmss ( 𝜑𝐷 𝑆 )
33 3 32 subsaluni ( 𝜑𝐷 ∈ ( 𝑆t 𝐷 ) )
34 33 adantr ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ* ) → 𝐷 ∈ ( 𝑆t 𝐷 ) )
35 31 34 eqeltrd ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ* ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≠ 𝐴 } ∈ ( 𝑆t 𝐷 ) )
36 11 35 pm2.61dan ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≠ 𝐴 } ∈ ( 𝑆t 𝐷 ) )