| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfpimne2.p | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | smfpimne2.x | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 3 |  | smfpimne2.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 4 |  | smfpimne2.f | ⊢ ( 𝜑  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 5 |  | smfpimne2.d | ⊢ 𝐷  =  dom  𝐹 | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑥 𝐴  ∈  ℝ* | 
						
							| 7 | 1 6 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝐴  ∈  ℝ* ) | 
						
							| 8 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ* )  →  𝑆  ∈  SAlg ) | 
						
							| 9 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ* )  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ* )  →  𝐴  ∈  ℝ* ) | 
						
							| 11 | 7 2 8 9 5 10 | smfpimne | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ* )  →  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  ≠  𝐴 }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 12 | 2 | nfdm | ⊢ Ⅎ 𝑥 dom  𝐹 | 
						
							| 13 | 5 12 | nfcxfr | ⊢ Ⅎ 𝑥 𝐷 | 
						
							| 14 | 13 | ssrab2f | ⊢ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  ≠  𝐴 }  ⊆  𝐷 | 
						
							| 15 | 14 | a1i | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ* )  →  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  ≠  𝐴 }  ⊆  𝐷 ) | 
						
							| 16 |  | nfv | ⊢ Ⅎ 𝑥 ¬  𝐴  ∈  ℝ* | 
						
							| 17 | 1 16 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  ¬  𝐴  ∈  ℝ* ) | 
						
							| 18 |  | ssidd | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ* )  →  𝐷  ⊆  𝐷 ) | 
						
							| 19 |  | nne | ⊢ ( ¬  ( 𝐹 ‘ 𝑥 )  ≠  𝐴  ↔  ( 𝐹 ‘ 𝑥 )  =  𝐴 ) | 
						
							| 20 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  =  𝐴 ) | 
						
							| 21 | 3 4 5 | smff | ⊢ ( 𝜑  →  𝐹 : 𝐷 ⟶ ℝ ) | 
						
							| 22 | 21 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 23 | 22 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 25 | 20 24 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝐴 )  →  𝐴  ∈  ℝ* ) | 
						
							| 26 | 19 25 | sylan2b | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  ¬  ( 𝐹 ‘ 𝑥 )  ≠  𝐴 )  →  𝐴  ∈  ℝ* ) | 
						
							| 27 | 26 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ* )  ∧  𝑥  ∈  𝐷 )  ∧  ¬  ( 𝐹 ‘ 𝑥 )  ≠  𝐴 )  →  𝐴  ∈  ℝ* ) | 
						
							| 28 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ* )  ∧  𝑥  ∈  𝐷 )  ∧  ¬  ( 𝐹 ‘ 𝑥 )  ≠  𝐴 )  →  ¬  𝐴  ∈  ℝ* ) | 
						
							| 29 | 27 28 | condan | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ* )  ∧  𝑥  ∈  𝐷 )  →  ( 𝐹 ‘ 𝑥 )  ≠  𝐴 ) | 
						
							| 30 | 13 13 17 18 29 | ssrabdf | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ* )  →  𝐷  ⊆  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  ≠  𝐴 } ) | 
						
							| 31 | 15 30 | eqssd | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ* )  →  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  ≠  𝐴 }  =  𝐷 ) | 
						
							| 32 | 3 4 5 | smfdmss | ⊢ ( 𝜑  →  𝐷  ⊆  ∪  𝑆 ) | 
						
							| 33 | 3 32 | subsaluni | ⊢ ( 𝜑  →  𝐷  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ* )  →  𝐷  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 35 | 31 34 | eqeltrd | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ* )  →  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  ≠  𝐴 }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 36 | 11 35 | pm2.61dan | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  ≠  𝐴 }  ∈  ( 𝑆  ↾t  𝐷 ) ) |