Step |
Hyp |
Ref |
Expression |
1 |
|
smfpimne2.p |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
smfpimne2.x |
⊢ Ⅎ 𝑥 𝐹 |
3 |
|
smfpimne2.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
4 |
|
smfpimne2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
5 |
|
smfpimne2.d |
⊢ 𝐷 = dom 𝐹 |
6 |
|
nfv |
⊢ Ⅎ 𝑥 𝐴 ∈ ℝ* |
7 |
1 6
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝐴 ∈ ℝ* ) |
8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ* ) → 𝑆 ∈ SAlg ) |
9 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ* ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ* ) → 𝐴 ∈ ℝ* ) |
11 |
7 2 8 9 5 10
|
smfpimne |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ* ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
12 |
2
|
nfdm |
⊢ Ⅎ 𝑥 dom 𝐹 |
13 |
5 12
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐷 |
14 |
13
|
ssrab2f |
⊢ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝐴 } ⊆ 𝐷 |
15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ* ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝐴 } ⊆ 𝐷 ) |
16 |
|
nfv |
⊢ Ⅎ 𝑥 ¬ 𝐴 ∈ ℝ* |
17 |
1 16
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ* ) |
18 |
|
ssidd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ* ) → 𝐷 ⊆ 𝐷 ) |
19 |
|
nne |
⊢ ( ¬ ( 𝐹 ‘ 𝑥 ) ≠ 𝐴 ↔ ( 𝐹 ‘ 𝑥 ) = 𝐴 ) |
20 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐴 ) |
21 |
3 4 5
|
smff |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℝ ) |
22 |
21
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
23 |
22
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
25 |
20 24
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝐴 ) → 𝐴 ∈ ℝ* ) |
26 |
19 25
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≠ 𝐴 ) → 𝐴 ∈ ℝ* ) |
27 |
26
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐷 ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≠ 𝐴 ) → 𝐴 ∈ ℝ* ) |
28 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐷 ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≠ 𝐴 ) → ¬ 𝐴 ∈ ℝ* ) |
29 |
27 28
|
condan |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑥 ) ≠ 𝐴 ) |
30 |
13 13 17 18 29
|
ssrabdf |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ* ) → 𝐷 ⊆ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝐴 } ) |
31 |
15 30
|
eqssd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ* ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝐴 } = 𝐷 ) |
32 |
3 4 5
|
smfdmss |
⊢ ( 𝜑 → 𝐷 ⊆ ∪ 𝑆 ) |
33 |
3 32
|
subsaluni |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝑆 ↾t 𝐷 ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ* ) → 𝐷 ∈ ( 𝑆 ↾t 𝐷 ) ) |
35 |
31 34
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ* ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
36 |
11 35
|
pm2.61dan |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |