Description: If a functions and a sigma-measurable function have domains in the sigma-algebra, the domain of the division of the two functions is in the sigma-algebra. This is the third statement of Proposition 121H of Fremlin1 p. 39 . Note: While the theorem in the book assumes both functions are sigma-measurable, this assumption is unnecessary for the part concerning their division, for the function at the numerator. It is required only for the function at the denominator. (Contributed by Glauco Siliprandi, 5-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smfdivdmmbl2.1 | ⊢ Ⅎ 𝑥 𝜑 | |
smfdivdmmbl2.2 | ⊢ Ⅎ 𝑥 𝐹 | ||
smfdivdmmbl2.3 | ⊢ Ⅎ 𝑥 𝐺 | ||
smfdivdmmbl2.4 | ⊢ ( 𝜑 → 𝑆 ∈ SAlg ) | ||
smfdivdmmbl2.5 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑉 ) | ||
smfdivdmmbl2.6 | ⊢ ( 𝜑 → 𝐺 ∈ ( SMblFn ‘ 𝑆 ) ) | ||
smfdivdmmbl2.7 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | ||
smfdivdmmbl2.8 | ⊢ ( 𝜑 → dom 𝐺 ∈ 𝑆 ) | ||
smfdivdmmbl2.9 | ⊢ 𝐷 = { 𝑥 ∈ dom 𝐺 ∣ ( 𝐺 ‘ 𝑥 ) ≠ 0 } | ||
smfdivdmmbl2.10 | ⊢ 𝐻 = ( 𝑥 ∈ ( dom 𝐹 ∩ 𝐷 ) ↦ ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) | ||
Assertion | smfdivdmmbl2 | ⊢ ( 𝜑 → dom 𝐻 ∈ 𝑆 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfdivdmmbl2.1 | ⊢ Ⅎ 𝑥 𝜑 | |
2 | smfdivdmmbl2.2 | ⊢ Ⅎ 𝑥 𝐹 | |
3 | smfdivdmmbl2.3 | ⊢ Ⅎ 𝑥 𝐺 | |
4 | smfdivdmmbl2.4 | ⊢ ( 𝜑 → 𝑆 ∈ SAlg ) | |
5 | smfdivdmmbl2.5 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑉 ) | |
6 | smfdivdmmbl2.6 | ⊢ ( 𝜑 → 𝐺 ∈ ( SMblFn ‘ 𝑆 ) ) | |
7 | smfdivdmmbl2.7 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | |
8 | smfdivdmmbl2.8 | ⊢ ( 𝜑 → dom 𝐺 ∈ 𝑆 ) | |
9 | smfdivdmmbl2.9 | ⊢ 𝐷 = { 𝑥 ∈ dom 𝐺 ∣ ( 𝐺 ‘ 𝑥 ) ≠ 0 } | |
10 | smfdivdmmbl2.10 | ⊢ 𝐻 = ( 𝑥 ∈ ( dom 𝐹 ∩ 𝐷 ) ↦ ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) | |
11 | 2 | nfdm | ⊢ Ⅎ 𝑥 dom 𝐹 |
12 | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∈ dom 𝐺 ∣ ( 𝐺 ‘ 𝑥 ) ≠ 0 } | |
13 | 9 12 | nfcxfr | ⊢ Ⅎ 𝑥 𝐷 |
14 | 11 13 | nfin | ⊢ Ⅎ 𝑥 ( dom 𝐹 ∩ 𝐷 ) |
15 | ovex | ⊢ ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ∈ V | |
16 | 14 15 10 | dmmptif | ⊢ dom 𝐻 = ( dom 𝐹 ∩ 𝐷 ) |
17 | 5 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
18 | 17 7 | eqeltrd | ⊢ ( 𝜑 → dom 𝐹 ∈ 𝑆 ) |
19 | 4 8 | salrestss | ⊢ ( 𝜑 → ( 𝑆 ↾t dom 𝐺 ) ⊆ 𝑆 ) |
20 | eqid | ⊢ dom 𝐺 = dom 𝐺 | |
21 | 1 3 4 6 20 | smfpimne2 | ⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐺 ∣ ( 𝐺 ‘ 𝑥 ) ≠ 0 } ∈ ( 𝑆 ↾t dom 𝐺 ) ) |
22 | 9 21 | eqeltrid | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝑆 ↾t dom 𝐺 ) ) |
23 | 19 22 | sseldd | ⊢ ( 𝜑 → 𝐷 ∈ 𝑆 ) |
24 | 4 18 23 | salincld | ⊢ ( 𝜑 → ( dom 𝐹 ∩ 𝐷 ) ∈ 𝑆 ) |
25 | 16 24 | eqeltrid | ⊢ ( 𝜑 → dom 𝐻 ∈ 𝑆 ) |