| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfdivdmmbl2.1 | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | smfdivdmmbl2.2 | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 3 |  | smfdivdmmbl2.3 | ⊢ Ⅎ 𝑥 𝐺 | 
						
							| 4 |  | smfdivdmmbl2.4 | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 5 |  | smfdivdmmbl2.5 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝑉 ) | 
						
							| 6 |  | smfdivdmmbl2.6 | ⊢ ( 𝜑  →  𝐺  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 7 |  | smfdivdmmbl2.7 | ⊢ ( 𝜑  →  𝐴  ∈  𝑆 ) | 
						
							| 8 |  | smfdivdmmbl2.8 | ⊢ ( 𝜑  →  dom  𝐺  ∈  𝑆 ) | 
						
							| 9 |  | smfdivdmmbl2.9 | ⊢ 𝐷  =  { 𝑥  ∈  dom  𝐺  ∣  ( 𝐺 ‘ 𝑥 )  ≠  0 } | 
						
							| 10 |  | smfdivdmmbl2.10 | ⊢ 𝐻  =  ( 𝑥  ∈  ( dom  𝐹  ∩  𝐷 )  ↦  ( ( 𝐹 ‘ 𝑥 )  /  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 11 | 2 | nfdm | ⊢ Ⅎ 𝑥 dom  𝐹 | 
						
							| 12 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  dom  𝐺  ∣  ( 𝐺 ‘ 𝑥 )  ≠  0 } | 
						
							| 13 | 9 12 | nfcxfr | ⊢ Ⅎ 𝑥 𝐷 | 
						
							| 14 | 11 13 | nfin | ⊢ Ⅎ 𝑥 ( dom  𝐹  ∩  𝐷 ) | 
						
							| 15 |  | ovex | ⊢ ( ( 𝐹 ‘ 𝑥 )  /  ( 𝐺 ‘ 𝑥 ) )  ∈  V | 
						
							| 16 | 14 15 10 | dmmptif | ⊢ dom  𝐻  =  ( dom  𝐹  ∩  𝐷 ) | 
						
							| 17 | 5 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝐴 ) | 
						
							| 18 | 17 7 | eqeltrd | ⊢ ( 𝜑  →  dom  𝐹  ∈  𝑆 ) | 
						
							| 19 | 4 8 | salrestss | ⊢ ( 𝜑  →  ( 𝑆  ↾t  dom  𝐺 )  ⊆  𝑆 ) | 
						
							| 20 |  | eqid | ⊢ dom  𝐺  =  dom  𝐺 | 
						
							| 21 | 1 3 4 6 20 | smfpimne2 | ⊢ ( 𝜑  →  { 𝑥  ∈  dom  𝐺  ∣  ( 𝐺 ‘ 𝑥 )  ≠  0 }  ∈  ( 𝑆  ↾t  dom  𝐺 ) ) | 
						
							| 22 | 9 21 | eqeltrid | ⊢ ( 𝜑  →  𝐷  ∈  ( 𝑆  ↾t  dom  𝐺 ) ) | 
						
							| 23 | 19 22 | sseldd | ⊢ ( 𝜑  →  𝐷  ∈  𝑆 ) | 
						
							| 24 | 4 18 23 | salincld | ⊢ ( 𝜑  →  ( dom  𝐹  ∩  𝐷 )  ∈  𝑆 ) | 
						
							| 25 | 16 24 | eqeltrid | ⊢ ( 𝜑  →  dom  𝐻  ∈  𝑆 ) |