Metamath Proof Explorer


Theorem smfdivdmmbl2

Description: If a functions and a sigma-measurable function have domains in the sigma-algebra, the domain of the division of the two functions is in the sigma-algebra. This is the third statement of Proposition 121H of Fremlin1 p. 39 . Note: While the theorem in the book assumes both functions are sigma-measurable, this assumption is unnecessary for the part concerning their division, for the function at the numerator. It is required only for the function at the denominator. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses smfdivdmmbl2.1 𝑥 𝜑
smfdivdmmbl2.2 𝑥 𝐹
smfdivdmmbl2.3 𝑥 𝐺
smfdivdmmbl2.4 ( 𝜑𝑆 ∈ SAlg )
smfdivdmmbl2.5 ( 𝜑𝐹 : 𝐴𝑉 )
smfdivdmmbl2.6 ( 𝜑𝐺 ∈ ( SMblFn ‘ 𝑆 ) )
smfdivdmmbl2.7 ( 𝜑𝐴𝑆 )
smfdivdmmbl2.8 ( 𝜑 → dom 𝐺𝑆 )
smfdivdmmbl2.9 𝐷 = { 𝑥 ∈ dom 𝐺 ∣ ( 𝐺𝑥 ) ≠ 0 }
smfdivdmmbl2.10 𝐻 = ( 𝑥 ∈ ( dom 𝐹𝐷 ) ↦ ( ( 𝐹𝑥 ) / ( 𝐺𝑥 ) ) )
Assertion smfdivdmmbl2 ( 𝜑 → dom 𝐻𝑆 )

Proof

Step Hyp Ref Expression
1 smfdivdmmbl2.1 𝑥 𝜑
2 smfdivdmmbl2.2 𝑥 𝐹
3 smfdivdmmbl2.3 𝑥 𝐺
4 smfdivdmmbl2.4 ( 𝜑𝑆 ∈ SAlg )
5 smfdivdmmbl2.5 ( 𝜑𝐹 : 𝐴𝑉 )
6 smfdivdmmbl2.6 ( 𝜑𝐺 ∈ ( SMblFn ‘ 𝑆 ) )
7 smfdivdmmbl2.7 ( 𝜑𝐴𝑆 )
8 smfdivdmmbl2.8 ( 𝜑 → dom 𝐺𝑆 )
9 smfdivdmmbl2.9 𝐷 = { 𝑥 ∈ dom 𝐺 ∣ ( 𝐺𝑥 ) ≠ 0 }
10 smfdivdmmbl2.10 𝐻 = ( 𝑥 ∈ ( dom 𝐹𝐷 ) ↦ ( ( 𝐹𝑥 ) / ( 𝐺𝑥 ) ) )
11 2 nfdm 𝑥 dom 𝐹
12 nfrab1 𝑥 { 𝑥 ∈ dom 𝐺 ∣ ( 𝐺𝑥 ) ≠ 0 }
13 9 12 nfcxfr 𝑥 𝐷
14 11 13 nfin 𝑥 ( dom 𝐹𝐷 )
15 ovex ( ( 𝐹𝑥 ) / ( 𝐺𝑥 ) ) ∈ V
16 14 15 10 dmmptif dom 𝐻 = ( dom 𝐹𝐷 )
17 5 fdmd ( 𝜑 → dom 𝐹 = 𝐴 )
18 17 7 eqeltrd ( 𝜑 → dom 𝐹𝑆 )
19 4 8 salrestss ( 𝜑 → ( 𝑆t dom 𝐺 ) ⊆ 𝑆 )
20 eqid dom 𝐺 = dom 𝐺
21 1 3 4 6 20 smfpimne2 ( 𝜑 → { 𝑥 ∈ dom 𝐺 ∣ ( 𝐺𝑥 ) ≠ 0 } ∈ ( 𝑆t dom 𝐺 ) )
22 9 21 eqeltrid ( 𝜑𝐷 ∈ ( 𝑆t dom 𝐺 ) )
23 19 22 sseldd ( 𝜑𝐷𝑆 )
24 4 18 23 salincld ( 𝜑 → ( dom 𝐹𝐷 ) ∈ 𝑆 )
25 16 24 eqeltrid ( 𝜑 → dom 𝐻𝑆 )