| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfdivdmmbl2.1 |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
smfdivdmmbl2.2 |
⊢ Ⅎ 𝑥 𝐹 |
| 3 |
|
smfdivdmmbl2.3 |
⊢ Ⅎ 𝑥 𝐺 |
| 4 |
|
smfdivdmmbl2.4 |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 5 |
|
smfdivdmmbl2.5 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑉 ) |
| 6 |
|
smfdivdmmbl2.6 |
⊢ ( 𝜑 → 𝐺 ∈ ( SMblFn ‘ 𝑆 ) ) |
| 7 |
|
smfdivdmmbl2.7 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
| 8 |
|
smfdivdmmbl2.8 |
⊢ ( 𝜑 → dom 𝐺 ∈ 𝑆 ) |
| 9 |
|
smfdivdmmbl2.9 |
⊢ 𝐷 = { 𝑥 ∈ dom 𝐺 ∣ ( 𝐺 ‘ 𝑥 ) ≠ 0 } |
| 10 |
|
smfdivdmmbl2.10 |
⊢ 𝐻 = ( 𝑥 ∈ ( dom 𝐹 ∩ 𝐷 ) ↦ ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) |
| 11 |
2
|
nfdm |
⊢ Ⅎ 𝑥 dom 𝐹 |
| 12 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ dom 𝐺 ∣ ( 𝐺 ‘ 𝑥 ) ≠ 0 } |
| 13 |
9 12
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐷 |
| 14 |
11 13
|
nfin |
⊢ Ⅎ 𝑥 ( dom 𝐹 ∩ 𝐷 ) |
| 15 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ∈ V |
| 16 |
14 15 10
|
dmmptif |
⊢ dom 𝐻 = ( dom 𝐹 ∩ 𝐷 ) |
| 17 |
5
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 18 |
17 7
|
eqeltrd |
⊢ ( 𝜑 → dom 𝐹 ∈ 𝑆 ) |
| 19 |
4 8
|
salrestss |
⊢ ( 𝜑 → ( 𝑆 ↾t dom 𝐺 ) ⊆ 𝑆 ) |
| 20 |
|
eqid |
⊢ dom 𝐺 = dom 𝐺 |
| 21 |
1 3 4 6 20
|
smfpimne2 |
⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐺 ∣ ( 𝐺 ‘ 𝑥 ) ≠ 0 } ∈ ( 𝑆 ↾t dom 𝐺 ) ) |
| 22 |
9 21
|
eqeltrid |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝑆 ↾t dom 𝐺 ) ) |
| 23 |
19 22
|
sseldd |
⊢ ( 𝜑 → 𝐷 ∈ 𝑆 ) |
| 24 |
4 18 23
|
salincld |
⊢ ( 𝜑 → ( dom 𝐹 ∩ 𝐷 ) ∈ 𝑆 ) |
| 25 |
16 24
|
eqeltrid |
⊢ ( 𝜑 → dom 𝐻 ∈ 𝑆 ) |