| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsupdm.1 | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 2 |  | fsupdm.2 | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 3 |  | fsupdm.3 | ⊢ Ⅎ 𝑚 𝜑 | 
						
							| 4 |  | fsupdm.4 | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 5 |  | fsupdm.5 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 ) : dom  ( 𝐹 ‘ 𝑛 ) ⟶ ℝ* ) | 
						
							| 6 |  | fsupdm.6 | ⊢ 𝐷  =  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 } | 
						
							| 7 |  | fsupdm.7 | ⊢ 𝐻  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 } ) ) | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑥 ℕ | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑥 𝑍 | 
						
							| 10 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 } | 
						
							| 11 | 8 10 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 } ) | 
						
							| 12 | 9 11 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑛  ∈  𝑍  ↦  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 } ) ) | 
						
							| 13 | 7 12 | nfcxfr | ⊢ Ⅎ 𝑥 𝐻 | 
						
							| 14 |  | nfcv | ⊢ Ⅎ 𝑥 𝑛 | 
						
							| 15 | 13 14 | nffv | ⊢ Ⅎ 𝑥 ( 𝐻 ‘ 𝑛 ) | 
						
							| 16 |  | nfcv | ⊢ Ⅎ 𝑥 𝑚 | 
						
							| 17 | 15 16 | nffv | ⊢ Ⅎ 𝑥 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) | 
						
							| 18 | 9 17 | nfiin | ⊢ Ⅎ 𝑥 ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) | 
						
							| 19 | 8 18 | nfiun | ⊢ Ⅎ 𝑥 ∪  𝑚  ∈  ℕ ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) | 
						
							| 20 |  | nfv | ⊢ Ⅎ 𝑚 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 21 | 3 20 | nfan | ⊢ Ⅎ 𝑚 ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 22 |  | nfv | ⊢ Ⅎ 𝑚 𝑦  ∈  ℝ | 
						
							| 23 | 21 22 | nfan | ⊢ Ⅎ 𝑚 ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ ) | 
						
							| 24 |  | nfv | ⊢ Ⅎ 𝑚 ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 | 
						
							| 25 | 23 24 | nfan | ⊢ Ⅎ 𝑚 ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 26 |  | nfii1 | ⊢ Ⅎ 𝑛 ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 27 | 26 | nfcri | ⊢ Ⅎ 𝑛 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 28 | 1 27 | nfan | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 29 |  | nfv | ⊢ Ⅎ 𝑛 𝑦  ∈  ℝ | 
						
							| 30 | 28 29 | nfan | ⊢ Ⅎ 𝑛 ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ ) | 
						
							| 31 |  | nfra1 | ⊢ Ⅎ 𝑛 ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 | 
						
							| 32 | 30 31 | nfan | ⊢ Ⅎ 𝑛 ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 33 |  | nfv | ⊢ Ⅎ 𝑛 𝑚  ∈  ℕ | 
						
							| 34 |  | nfv | ⊢ Ⅎ 𝑛 𝑦  <  𝑚 | 
						
							| 35 | 32 33 34 | nf3an | ⊢ Ⅎ 𝑛 ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑚  ∈  ℕ  ∧  𝑦  <  𝑚 ) | 
						
							| 36 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 37 | 36 | a1i | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑚  ∈  ℕ  ∧  𝑦  <  𝑚 )  →  𝑥  ∈  V ) | 
						
							| 38 |  | simp-4r | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 39 | 38 | 3ad2antl1 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑚  ∈  ℕ  ∧  𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 40 |  | simpr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑚  ∈  ℕ  ∧  𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  𝑛  ∈  𝑍 ) | 
						
							| 41 |  | eliinid | ⊢ ( ( 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 42 | 39 40 41 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑚  ∈  ℕ  ∧  𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 43 |  | simp-4l | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑛  ∈  𝑍 )  →  𝜑 ) | 
						
							| 44 | 43 | 3ad2antl1 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑚  ∈  ℕ  ∧  𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  𝜑 ) | 
						
							| 45 | 44 40 5 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑚  ∈  ℕ  ∧  𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 ) : dom  ( 𝐹 ‘ 𝑛 ) ⟶ ℝ* ) | 
						
							| 46 | 45 42 | ffvelcdmd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑚  ∈  ℕ  ∧  𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 47 |  | simpllr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑛  ∈  𝑍 )  →  𝑦  ∈  ℝ ) | 
						
							| 48 | 47 | rexrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑛  ∈  𝑍 )  →  𝑦  ∈  ℝ* ) | 
						
							| 49 | 48 | 3ad2antl1 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑚  ∈  ℕ  ∧  𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  𝑦  ∈  ℝ* ) | 
						
							| 50 |  | simpl2 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑚  ∈  ℕ  ∧  𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  𝑚  ∈  ℕ ) | 
						
							| 51 | 50 | nnxrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑚  ∈  ℕ  ∧  𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  𝑚  ∈  ℝ* ) | 
						
							| 52 |  | simpl1r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑚  ∈  ℕ  ∧  𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 53 |  | rspa | ⊢ ( ( ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 54 | 52 40 53 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑚  ∈  ℕ  ∧  𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 55 |  | simpl3 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑚  ∈  ℕ  ∧  𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  𝑦  <  𝑚 ) | 
						
							| 56 | 46 49 51 54 55 | xrlelttrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑚  ∈  ℕ  ∧  𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 ) | 
						
							| 57 | 42 56 | rabidd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑚  ∈  ℕ  ∧  𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 } ) | 
						
							| 58 |  | trud | ⊢ ( 𝑛  ∈  𝑍  →  ⊤ ) | 
						
							| 59 |  | id | ⊢ ( 𝑛  ∈  𝑍  →  𝑛  ∈  𝑍 ) | 
						
							| 60 |  | nfcv | ⊢ Ⅎ 𝑛 𝑍 | 
						
							| 61 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 62 | 61 | mptex | ⊢ ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 } )  ∈  V | 
						
							| 63 | 62 | a1i | ⊢ ( ( ⊤  ∧  𝑛  ∈  𝑍 )  →  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 } )  ∈  V ) | 
						
							| 64 | 60 7 63 | fvmpt2df | ⊢ ( ( ⊤  ∧  𝑛  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑛 )  =  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 } ) ) | 
						
							| 65 | 58 59 64 | syl2anc | ⊢ ( 𝑛  ∈  𝑍  →  ( 𝐻 ‘ 𝑛 )  =  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 } ) ) | 
						
							| 66 | 4 14 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑛 ) | 
						
							| 67 | 66 | nfdm | ⊢ Ⅎ 𝑥 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 68 |  | fvex | ⊢ ( 𝐹 ‘ 𝑛 )  ∈  V | 
						
							| 69 | 68 | dmex | ⊢ dom  ( 𝐹 ‘ 𝑛 )  ∈  V | 
						
							| 70 | 67 69 | rabexf | ⊢ { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 }  ∈  V | 
						
							| 71 | 70 | a1i | ⊢ ( ( 𝑛  ∈  𝑍  ∧  𝑚  ∈  ℕ )  →  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 }  ∈  V ) | 
						
							| 72 | 65 71 | fvmpt2d | ⊢ ( ( 𝑛  ∈  𝑍  ∧  𝑚  ∈  ℕ )  →  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 )  =  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 } ) | 
						
							| 73 | 72 | eqcomd | ⊢ ( ( 𝑛  ∈  𝑍  ∧  𝑚  ∈  ℕ )  →  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 }  =  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 74 | 40 50 73 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑚  ∈  ℕ  ∧  𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 }  =  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 75 | 57 74 | eleqtrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑚  ∈  ℕ  ∧  𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 76 | 35 37 75 | eliind2 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  ∧  𝑚  ∈  ℕ  ∧  𝑦  <  𝑚 )  →  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 77 |  | arch | ⊢ ( 𝑦  ∈  ℝ  →  ∃ 𝑚  ∈  ℕ 𝑦  <  𝑚 ) | 
						
							| 78 | 77 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  →  ∃ 𝑚  ∈  ℕ 𝑦  <  𝑚 ) | 
						
							| 79 | 25 76 78 | reximdd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  →  ∃ 𝑚  ∈  ℕ 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 80 | 79 | rexlimdva2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  →  ( ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦  →  ∃ 𝑚  ∈  ℕ 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ) | 
						
							| 81 | 80 | 3impia | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  →  ∃ 𝑚  ∈  ℕ 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 82 |  | eliun | ⊢ ( 𝑥  ∈  ∪  𝑚  ∈  ℕ ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 )  ↔  ∃ 𝑚  ∈  ℕ 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 83 | 81 82 | sylibr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 )  →  𝑥  ∈  ∪  𝑚  ∈  ℕ ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 84 | 2 19 83 | rabssd | ⊢ ( 𝜑  →  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 }  ⊆  ∪  𝑚  ∈  ℕ ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 85 | 6 84 | eqsstrid | ⊢ ( 𝜑  →  𝐷  ⊆  ∪  𝑚  ∈  ℕ ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 86 |  | nfcv | ⊢ Ⅎ 𝑚 𝐷 | 
						
							| 87 |  | nfv | ⊢ Ⅎ 𝑥 𝑚  ∈  ℕ | 
						
							| 88 | 2 87 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑚  ∈  ℕ ) | 
						
							| 89 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 } | 
						
							| 90 | 6 89 | nfcxfr | ⊢ Ⅎ 𝑥 𝐷 | 
						
							| 91 | 1 33 | nfan | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑚  ∈  ℕ ) | 
						
							| 92 |  | nfii1 | ⊢ Ⅎ 𝑛 ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) | 
						
							| 93 | 92 | nfcri | ⊢ Ⅎ 𝑛 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) | 
						
							| 94 | 91 93 | nfan | ⊢ Ⅎ 𝑛 ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 95 | 36 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  →  𝑥  ∈  V ) | 
						
							| 96 |  | eliinid | ⊢ ( ( 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 97 | 96 | adantll | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 98 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑛  ∈  𝑍 ) | 
						
							| 99 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑚  ∈  ℕ ) | 
						
							| 100 | 98 99 72 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 )  =  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 } ) | 
						
							| 101 | 97 100 | eleqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 } ) | 
						
							| 102 |  | rabidim1 | ⊢ ( 𝑥  ∈  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 }  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 103 | 101 102 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 104 | 94 95 103 | eliind2 | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  →  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 105 |  | nnre | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℝ ) | 
						
							| 106 | 105 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  →  𝑚  ∈  ℝ ) | 
						
							| 107 |  | breq2 | ⊢ ( 𝑦  =  𝑚  →  ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦  ↔  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑚 ) ) | 
						
							| 108 | 107 | ralbidv | ⊢ ( 𝑦  =  𝑚  →  ( ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦  ↔  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑚 ) ) | 
						
							| 109 | 108 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑦  =  𝑚 )  →  ( ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦  ↔  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑚 ) ) | 
						
							| 110 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑛  ∈  𝑍 )  →  𝜑 ) | 
						
							| 111 | 5 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) )  →  ( 𝐹 ‘ 𝑛 ) : dom  ( 𝐹 ‘ 𝑛 ) ⟶ ℝ* ) | 
						
							| 112 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 113 | 111 112 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 114 | 110 98 103 113 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 115 | 99 | nnxrd | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑚  ∈  ℝ* ) | 
						
							| 116 |  | rabidim2 | ⊢ ( 𝑥  ∈  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 }  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 ) | 
						
							| 117 | 101 116 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 ) | 
						
							| 118 | 114 115 117 | xrltled | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑚 ) | 
						
							| 119 | 94 118 | ralrimia | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  →  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑚 ) | 
						
							| 120 | 106 109 119 | rspcedvd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 121 | 104 120 | rabidd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  →  𝑥  ∈  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 } ) | 
						
							| 122 | 121 6 | eleqtrrdi | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  →  𝑥  ∈  𝐷 ) | 
						
							| 123 | 88 18 90 122 | ssdf2 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 )  ⊆  𝐷 ) | 
						
							| 124 | 3 86 123 | iunssdf | ⊢ ( 𝜑  →  ∪  𝑚  ∈  ℕ ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 )  ⊆  𝐷 ) | 
						
							| 125 | 85 124 | eqssd | ⊢ ( 𝜑  →  𝐷  =  ∪  𝑚  ∈  ℕ ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |