Step |
Hyp |
Ref |
Expression |
1 |
|
fsupdm.1 |
⊢ Ⅎ 𝑛 𝜑 |
2 |
|
fsupdm.2 |
⊢ Ⅎ 𝑥 𝜑 |
3 |
|
fsupdm.3 |
⊢ Ⅎ 𝑚 𝜑 |
4 |
|
fsupdm.4 |
⊢ Ⅎ 𝑥 𝐹 |
5 |
|
fsupdm.5 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : dom ( 𝐹 ‘ 𝑛 ) ⟶ ℝ* ) |
6 |
|
fsupdm.6 |
⊢ 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } |
7 |
|
fsupdm.7 |
⊢ 𝐻 = ( 𝑛 ∈ 𝑍 ↦ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } ) ) |
8 |
|
nfcv |
⊢ Ⅎ 𝑥 ℕ |
9 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
10 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } |
11 |
8 10
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } ) |
12 |
9 11
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑛 ∈ 𝑍 ↦ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } ) ) |
13 |
7 12
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐻 |
14 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑛 |
15 |
13 14
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐻 ‘ 𝑛 ) |
16 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑚 |
17 |
15 16
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) |
18 |
9 17
|
nfiin |
⊢ Ⅎ 𝑥 ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) |
19 |
8 18
|
nfiun |
⊢ Ⅎ 𝑥 ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) |
20 |
|
nfv |
⊢ Ⅎ 𝑚 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
21 |
3 20
|
nfan |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
22 |
|
nfv |
⊢ Ⅎ 𝑚 𝑦 ∈ ℝ |
23 |
21 22
|
nfan |
⊢ Ⅎ 𝑚 ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) |
24 |
|
nfv |
⊢ Ⅎ 𝑚 ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 |
25 |
23 24
|
nfan |
⊢ Ⅎ 𝑚 ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
26 |
|
nfii1 |
⊢ Ⅎ 𝑛 ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
27 |
26
|
nfcri |
⊢ Ⅎ 𝑛 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
28 |
1 27
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
29 |
|
nfv |
⊢ Ⅎ 𝑛 𝑦 ∈ ℝ |
30 |
28 29
|
nfan |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) |
31 |
|
nfra1 |
⊢ Ⅎ 𝑛 ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 |
32 |
30 31
|
nfan |
⊢ Ⅎ 𝑛 ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
33 |
|
nfv |
⊢ Ⅎ 𝑛 𝑚 ∈ ℕ |
34 |
|
nfv |
⊢ Ⅎ 𝑛 𝑦 < 𝑚 |
35 |
32 33 34
|
nf3an |
⊢ Ⅎ 𝑛 ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) |
36 |
|
vex |
⊢ 𝑥 ∈ V |
37 |
36
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) → 𝑥 ∈ V ) |
38 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
39 |
38
|
3ad2antl1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
40 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) |
41 |
|
eliinid |
⊢ ( ( 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
42 |
39 40 41
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
43 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑛 ∈ 𝑍 ) → 𝜑 ) |
44 |
43
|
3ad2antl1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → 𝜑 ) |
45 |
44 40 5
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : dom ( 𝐹 ‘ 𝑛 ) ⟶ ℝ* ) |
46 |
45 42
|
ffvelcdmd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ* ) |
47 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑦 ∈ ℝ ) |
48 |
47
|
rexrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑦 ∈ ℝ* ) |
49 |
48
|
3ad2antl1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑦 ∈ ℝ* ) |
50 |
|
simpl2 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑚 ∈ ℕ ) |
51 |
50
|
nnxrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑚 ∈ ℝ* ) |
52 |
|
simpl1r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
53 |
|
rspa |
⊢ ( ( ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
54 |
52 40 53
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
55 |
|
simpl3 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑦 < 𝑚 ) |
56 |
46 49 51 54 55
|
xrlelttrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 ) |
57 |
42 56
|
rabidd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } ) |
58 |
|
trud |
⊢ ( 𝑛 ∈ 𝑍 → ⊤ ) |
59 |
|
id |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ 𝑍 ) |
60 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑍 |
61 |
|
nnex |
⊢ ℕ ∈ V |
62 |
61
|
mptex |
⊢ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } ) ∈ V |
63 |
62
|
a1i |
⊢ ( ( ⊤ ∧ 𝑛 ∈ 𝑍 ) → ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } ) ∈ V ) |
64 |
60 7 63
|
fvmpt2df |
⊢ ( ( ⊤ ∧ 𝑛 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑛 ) = ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } ) ) |
65 |
58 59 64
|
syl2anc |
⊢ ( 𝑛 ∈ 𝑍 → ( 𝐻 ‘ 𝑛 ) = ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } ) ) |
66 |
4 14
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑛 ) |
67 |
66
|
nfdm |
⊢ Ⅎ 𝑥 dom ( 𝐹 ‘ 𝑛 ) |
68 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑛 ) ∈ V |
69 |
68
|
dmex |
⊢ dom ( 𝐹 ‘ 𝑛 ) ∈ V |
70 |
67 69
|
rabexf |
⊢ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } ∈ V |
71 |
70
|
a1i |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑚 ∈ ℕ ) → { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } ∈ V ) |
72 |
65 71
|
fvmpt2d |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑚 ∈ ℕ ) → ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) = { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } ) |
73 |
72
|
eqcomd |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑚 ∈ ℕ ) → { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } = ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
74 |
40 50 73
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } = ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
75 |
57 74
|
eleqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
76 |
35 37 75
|
eliind2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
77 |
|
arch |
⊢ ( 𝑦 ∈ ℝ → ∃ 𝑚 ∈ ℕ 𝑦 < 𝑚 ) |
78 |
77
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) → ∃ 𝑚 ∈ ℕ 𝑦 < 𝑚 ) |
79 |
25 76 78
|
reximdd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) → ∃ 𝑚 ∈ ℕ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
80 |
79
|
rexlimdva2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 → ∃ 𝑚 ∈ ℕ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ) |
81 |
80
|
3impia |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) → ∃ 𝑚 ∈ ℕ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
82 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ↔ ∃ 𝑚 ∈ ℕ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
83 |
81 82
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) → 𝑥 ∈ ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
84 |
2 19 83
|
rabssd |
⊢ ( 𝜑 → { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } ⊆ ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
85 |
6 84
|
eqsstrid |
⊢ ( 𝜑 → 𝐷 ⊆ ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
86 |
|
nfcv |
⊢ Ⅎ 𝑚 𝐷 |
87 |
|
nfv |
⊢ Ⅎ 𝑥 𝑚 ∈ ℕ |
88 |
2 87
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑚 ∈ ℕ ) |
89 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } |
90 |
6 89
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐷 |
91 |
1 33
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑚 ∈ ℕ ) |
92 |
|
nfii1 |
⊢ Ⅎ 𝑛 ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) |
93 |
92
|
nfcri |
⊢ Ⅎ 𝑛 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) |
94 |
91 93
|
nfan |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
95 |
36
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) → 𝑥 ∈ V ) |
96 |
|
eliinid |
⊢ ( ( 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
97 |
96
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
98 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) |
99 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑚 ∈ ℕ ) |
100 |
98 99 72
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) = { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } ) |
101 |
97 100
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } ) |
102 |
|
rabidim1 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
103 |
101 102
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
104 |
94 95 103
|
eliind2 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
105 |
|
nnre |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ ) |
106 |
105
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) → 𝑚 ∈ ℝ ) |
107 |
|
breq2 |
⊢ ( 𝑦 = 𝑚 → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑚 ) ) |
108 |
107
|
ralbidv |
⊢ ( 𝑦 = 𝑚 → ( ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑚 ) ) |
109 |
108
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑦 = 𝑚 ) → ( ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑚 ) ) |
110 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝜑 ) |
111 |
5
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) → ( 𝐹 ‘ 𝑛 ) : dom ( 𝐹 ‘ 𝑛 ) ⟶ ℝ* ) |
112 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
113 |
111 112
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ* ) |
114 |
110 98 103 113
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ* ) |
115 |
99
|
nnxrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑚 ∈ ℝ* ) |
116 |
|
rabidim2 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 ) |
117 |
101 116
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 ) |
118 |
114 115 117
|
xrltled |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑚 ) |
119 |
94 118
|
ralrimia |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) → ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑚 ) |
120 |
106 109 119
|
rspcedvd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
121 |
104 120
|
rabidd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) → 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } ) |
122 |
121 6
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) → 𝑥 ∈ 𝐷 ) |
123 |
88 18 90 122
|
ssdf2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ⊆ 𝐷 ) |
124 |
3 86 123
|
iunssdf |
⊢ ( 𝜑 → ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ⊆ 𝐷 ) |
125 |
85 124
|
eqssd |
⊢ ( 𝜑 → 𝐷 = ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |