Metamath Proof Explorer


Theorem fsupdm

Description: The domain of the sup function is defined in Proposition 121F (b) of Fremlin1, p. 38. Note that this definition of the sup function is quite general, as it does not require the original functions to be sigma-measurable, and it could be applied to uncountable sets of functions. The equality proved here is part of the proof of the fourth statement of Proposition 121H in Fremlin1, p. 39. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses fsupdm.1 𝑛 𝜑
fsupdm.2 𝑥 𝜑
fsupdm.3 𝑚 𝜑
fsupdm.4 𝑥 𝐹
fsupdm.5 ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) : dom ( 𝐹𝑛 ) ⟶ ℝ* )
fsupdm.6 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 }
fsupdm.7 𝐻 = ( 𝑛𝑍 ↦ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 } ) )
Assertion fsupdm ( 𝜑𝐷 = 𝑚 ∈ ℕ 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) )

Proof

Step Hyp Ref Expression
1 fsupdm.1 𝑛 𝜑
2 fsupdm.2 𝑥 𝜑
3 fsupdm.3 𝑚 𝜑
4 fsupdm.4 𝑥 𝐹
5 fsupdm.5 ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) : dom ( 𝐹𝑛 ) ⟶ ℝ* )
6 fsupdm.6 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 }
7 fsupdm.7 𝐻 = ( 𝑛𝑍 ↦ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 } ) )
8 nfcv 𝑥
9 nfcv 𝑥 𝑍
10 nfrab1 𝑥 { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 }
11 8 10 nfmpt 𝑥 ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 } )
12 9 11 nfmpt 𝑥 ( 𝑛𝑍 ↦ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 } ) )
13 7 12 nfcxfr 𝑥 𝐻
14 nfcv 𝑥 𝑛
15 13 14 nffv 𝑥 ( 𝐻𝑛 )
16 nfcv 𝑥 𝑚
17 15 16 nffv 𝑥 ( ( 𝐻𝑛 ) ‘ 𝑚 )
18 9 17 nfiin 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 )
19 8 18 nfiun 𝑥 𝑚 ∈ ℕ 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 )
20 nfv 𝑚 𝑥 𝑛𝑍 dom ( 𝐹𝑛 )
21 3 20 nfan 𝑚 ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) )
22 nfv 𝑚 𝑦 ∈ ℝ
23 21 22 nfan 𝑚 ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ )
24 nfv 𝑚𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦
25 23 24 nfan 𝑚 ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 )
26 nfii1 𝑛 𝑛𝑍 dom ( 𝐹𝑛 )
27 26 nfcri 𝑛 𝑥 𝑛𝑍 dom ( 𝐹𝑛 )
28 1 27 nfan 𝑛 ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) )
29 nfv 𝑛 𝑦 ∈ ℝ
30 28 29 nfan 𝑛 ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ )
31 nfra1 𝑛𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦
32 30 31 nfan 𝑛 ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 )
33 nfv 𝑛 𝑚 ∈ ℕ
34 nfv 𝑛 𝑦 < 𝑚
35 32 33 34 nf3an 𝑛 ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 )
36 vex 𝑥 ∈ V
37 36 a1i ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) → 𝑥 ∈ V )
38 simp-4r ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑛𝑍 ) → 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) )
39 38 3ad2antl1 ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) )
40 simpr ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → 𝑛𝑍 )
41 eliinid ( ( 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∧ 𝑛𝑍 ) → 𝑥 ∈ dom ( 𝐹𝑛 ) )
42 39 40 41 syl2anc ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → 𝑥 ∈ dom ( 𝐹𝑛 ) )
43 simp-4l ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑛𝑍 ) → 𝜑 )
44 43 3ad2antl1 ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → 𝜑 )
45 44 40 5 syl2anc ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → ( 𝐹𝑛 ) : dom ( 𝐹𝑛 ) ⟶ ℝ* )
46 45 42 ffvelcdmd ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ* )
47 simpllr ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑛𝑍 ) → 𝑦 ∈ ℝ )
48 47 rexrd ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑛𝑍 ) → 𝑦 ∈ ℝ* )
49 48 3ad2antl1 ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → 𝑦 ∈ ℝ* )
50 simpl2 ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → 𝑚 ∈ ℕ )
51 50 nnxrd ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → 𝑚 ∈ ℝ* )
52 simpl1r ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 )
53 rspa ( ( ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦𝑛𝑍 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 )
54 52 40 53 syl2anc ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 )
55 simpl3 ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → 𝑦 < 𝑚 )
56 46 49 51 54 55 xrlelttrd ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 )
57 42 56 rabidd ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 } )
58 trud ( 𝑛𝑍 → ⊤ )
59 id ( 𝑛𝑍𝑛𝑍 )
60 nfcv 𝑛 𝑍
61 nnex ℕ ∈ V
62 61 mptex ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 } ) ∈ V
63 62 a1i ( ( ⊤ ∧ 𝑛𝑍 ) → ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 } ) ∈ V )
64 60 7 63 fvmpt2df ( ( ⊤ ∧ 𝑛𝑍 ) → ( 𝐻𝑛 ) = ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 } ) )
65 58 59 64 syl2anc ( 𝑛𝑍 → ( 𝐻𝑛 ) = ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 } ) )
66 4 14 nffv 𝑥 ( 𝐹𝑛 )
67 66 nfdm 𝑥 dom ( 𝐹𝑛 )
68 fvex ( 𝐹𝑛 ) ∈ V
69 68 dmex dom ( 𝐹𝑛 ) ∈ V
70 67 69 rabexf { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 } ∈ V
71 70 a1i ( ( 𝑛𝑍𝑚 ∈ ℕ ) → { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 } ∈ V )
72 65 71 fvmpt2d ( ( 𝑛𝑍𝑚 ∈ ℕ ) → ( ( 𝐻𝑛 ) ‘ 𝑚 ) = { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 } )
73 72 eqcomd ( ( 𝑛𝑍𝑚 ∈ ℕ ) → { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 } = ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
74 40 50 73 syl2anc ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 } = ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
75 57 74 eleqtrd ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → 𝑥 ∈ ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
76 35 37 75 eliind2 ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚 ) → 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
77 arch ( 𝑦 ∈ ℝ → ∃ 𝑚 ∈ ℕ 𝑦 < 𝑚 )
78 77 ad2antlr ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) → ∃ 𝑚 ∈ ℕ 𝑦 < 𝑚 )
79 25 76 78 reximdd ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) → ∃ 𝑚 ∈ ℕ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
80 79 rexlimdva2 ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 → ∃ 𝑚 ∈ ℕ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) )
81 80 3impia ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) → ∃ 𝑚 ∈ ℕ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
82 eliun ( 𝑥 𝑚 ∈ ℕ 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ↔ ∃ 𝑚 ∈ ℕ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
83 81 82 sylibr ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) → 𝑥 𝑚 ∈ ℕ 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
84 2 19 83 rabssd ( 𝜑 → { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } ⊆ 𝑚 ∈ ℕ 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
85 6 84 eqsstrid ( 𝜑𝐷 𝑚 ∈ ℕ 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
86 nfcv 𝑚 𝐷
87 nfv 𝑥 𝑚 ∈ ℕ
88 2 87 nfan 𝑥 ( 𝜑𝑚 ∈ ℕ )
89 nfrab1 𝑥 { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 }
90 6 89 nfcxfr 𝑥 𝐷
91 1 33 nfan 𝑛 ( 𝜑𝑚 ∈ ℕ )
92 nfii1 𝑛 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 )
93 92 nfcri 𝑛 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 )
94 91 93 nfan 𝑛 ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
95 36 a1i ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) → 𝑥 ∈ V )
96 eliinid ( ( 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ∧ 𝑛𝑍 ) → 𝑥 ∈ ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
97 96 adantll ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛𝑍 ) → 𝑥 ∈ ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
98 simpr ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛𝑍 ) → 𝑛𝑍 )
99 simpllr ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛𝑍 ) → 𝑚 ∈ ℕ )
100 98 99 72 syl2anc ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛𝑍 ) → ( ( 𝐻𝑛 ) ‘ 𝑚 ) = { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 } )
101 97 100 eleqtrd ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛𝑍 ) → 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 } )
102 rabidim1 ( 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 } → 𝑥 ∈ dom ( 𝐹𝑛 ) )
103 101 102 syl ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛𝑍 ) → 𝑥 ∈ dom ( 𝐹𝑛 ) )
104 94 95 103 eliind2 ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) → 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) )
105 nnre ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ )
106 105 ad2antlr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) → 𝑚 ∈ ℝ )
107 breq2 ( 𝑦 = 𝑚 → ( ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑚 ) )
108 107 ralbidv ( 𝑦 = 𝑚 → ( ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑚 ) )
109 108 adantl ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑦 = 𝑚 ) → ( ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑚 ) )
110 simplll ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛𝑍 ) → 𝜑 )
111 5 3adant3 ( ( 𝜑𝑛𝑍𝑥 ∈ dom ( 𝐹𝑛 ) ) → ( 𝐹𝑛 ) : dom ( 𝐹𝑛 ) ⟶ ℝ* )
112 simp3 ( ( 𝜑𝑛𝑍𝑥 ∈ dom ( 𝐹𝑛 ) ) → 𝑥 ∈ dom ( 𝐹𝑛 ) )
113 111 112 ffvelcdmd ( ( 𝜑𝑛𝑍𝑥 ∈ dom ( 𝐹𝑛 ) ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ* )
114 110 98 103 113 syl3anc ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛𝑍 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ* )
115 99 nnxrd ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛𝑍 ) → 𝑚 ∈ ℝ* )
116 rabidim2 ( 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 } → ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 )
117 101 116 syl ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛𝑍 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 )
118 114 115 117 xrltled ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛𝑍 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑚 )
119 94 118 ralrimia ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) → ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑚 )
120 106 109 119 rspcedvd ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 )
121 104 120 rabidd ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) → 𝑥 ∈ { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } )
122 121 6 eleqtrrdi ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) → 𝑥𝐷 )
123 88 18 90 122 ssdf2 ( ( 𝜑𝑚 ∈ ℕ ) → 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ⊆ 𝐷 )
124 3 86 123 iunssdf ( 𝜑 𝑚 ∈ ℕ 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ⊆ 𝐷 )
125 85 124 eqssd ( 𝜑𝐷 = 𝑚 ∈ ℕ 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) )