Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 5-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptelcdmf.a | ⊢ Ⅎ 𝑥 𝐴 | |
| fvmptelcdmf.c | ⊢ Ⅎ 𝑥 𝐶 | ||
| fvmptelcdmf.f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝐶 ) | ||
| Assertion | fvmptelcdmf | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptelcdmf.a | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | fvmptelcdmf.c | ⊢ Ⅎ 𝑥 𝐶 | |
| 3 | fvmptelcdmf.f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝐶 ) | |
| 4 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 5 | 1 2 4 | fmptff | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝐶 ) |
| 6 | 3 5 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ) |
| 7 | 6 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐶 ) |