Metamath Proof Explorer


Theorem fvmptelcdmf

Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses fvmptelcdmf.a _xA
fvmptelcdmf.c _xC
fvmptelcdmf.f φxAB:AC
Assertion fvmptelcdmf φxABC

Proof

Step Hyp Ref Expression
1 fvmptelcdmf.a _xA
2 fvmptelcdmf.c _xC
3 fvmptelcdmf.f φxAB:AC
4 eqid xAB=xAB
5 1 2 4 fmptff xABCxAB:AC
6 3 5 sylibr φxABC
7 6 r19.21bi φxABC