Metamath Proof Explorer


Theorem fmptff

Description: Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses fmptff.1 _xA
fmptff.2 _xB
fmptff.3 F=xAC
Assertion fmptff xACBF:AB

Proof

Step Hyp Ref Expression
1 fmptff.1 _xA
2 fmptff.2 _xB
3 fmptff.3 F=xAC
4 nfcv _yA
5 nfv yCB
6 nfcsb1v _xy/xC
7 6 2 nfel xy/xCB
8 csbeq1a x=yC=y/xC
9 8 eleq1d x=yCBy/xCB
10 1 4 5 7 9 cbvralfw xACByAy/xCB
11 nfcv _yC
12 1 4 11 6 8 cbvmptf xAC=yAy/xC
13 3 12 eqtri F=yAy/xC
14 13 fmpt yAy/xCBF:AB
15 10 14 bitri xACBF:AB