Metamath Proof Explorer


Theorem fmptdff

Description: A version of fmptd using bound-variable hypothesis instead of a distinct variable condition for ph . (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses fmptdff.1 xφ
fmptdff.2 _xA
fmptdff.3 _xC
fmptdff.4 φxABC
fmptdff.5 F=xAB
Assertion fmptdff φF:AC

Proof

Step Hyp Ref Expression
1 fmptdff.1 xφ
2 fmptdff.2 _xA
3 fmptdff.3 _xC
4 fmptdff.4 φxABC
5 fmptdff.5 F=xAB
6 1 4 ralrimia φxABC
7 2 3 5 fmptff xABCF:AC
8 6 7 sylib φF:AC