Description: A version of fmptd using bound-variable hypothesis instead of a distinct variable condition for ph . (Contributed by Glauco Siliprandi, 5-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmptdff.1 | |- F/ x ph |
|
| fmptdff.2 | |- F/_ x A |
||
| fmptdff.3 | |- F/_ x C |
||
| fmptdff.4 | |- ( ( ph /\ x e. A ) -> B e. C ) |
||
| fmptdff.5 | |- F = ( x e. A |-> B ) |
||
| Assertion | fmptdff | |- ( ph -> F : A --> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptdff.1 | |- F/ x ph |
|
| 2 | fmptdff.2 | |- F/_ x A |
|
| 3 | fmptdff.3 | |- F/_ x C |
|
| 4 | fmptdff.4 | |- ( ( ph /\ x e. A ) -> B e. C ) |
|
| 5 | fmptdff.5 | |- F = ( x e. A |-> B ) |
|
| 6 | 1 4 | ralrimia | |- ( ph -> A. x e. A B e. C ) |
| 7 | 2 3 5 | fmptff | |- ( A. x e. A B e. C <-> F : A --> C ) |
| 8 | 6 7 | sylib | |- ( ph -> F : A --> C ) |