Metamath Proof Explorer


Theorem muldmmbl2

Description: If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of Fremlin1, p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024)

Ref Expression
Hypotheses muldmmbl2.1 _ x F
muldmmbl2.2 _ x G
muldmmbl2.3 φ S SAlg
muldmmbl2.4 φ dom F S
muldmmbl2.5 φ dom G S
muldmmbl2.6 H = x dom F dom G F x G x
Assertion muldmmbl2 φ dom H S

Proof

Step Hyp Ref Expression
1 muldmmbl2.1 _ x F
2 muldmmbl2.2 _ x G
3 muldmmbl2.3 φ S SAlg
4 muldmmbl2.4 φ dom F S
5 muldmmbl2.5 φ dom G S
6 muldmmbl2.6 H = x dom F dom G F x G x
7 1 nfdm _ x dom F
8 2 nfdm _ x dom G
9 7 8 nfin _ x dom F dom G
10 ovex F x G x V
11 9 10 6 dmmptif dom H = dom F dom G
12 11 a1i φ dom H = dom F dom G
13 3 4 5 salincld φ dom F dom G S
14 12 13 eqeltrd φ dom H S