Metamath Proof Explorer


Theorem muldmmbl

Description: If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of Fremlin1, p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024)

Ref Expression
Hypotheses muldmmbl.1 𝑥 𝜑
muldmmbl.2 𝑥 𝐴
muldmmbl.3 𝑥 𝐵
muldmmbl.4 ( 𝜑𝑆 ∈ SAlg )
muldmmbl.5 ( 𝜑𝐴𝑆 )
muldmmbl.6 ( 𝜑𝐵𝑆 )
Assertion muldmmbl ( 𝜑 → dom ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ ( 𝐶 · 𝐷 ) ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 muldmmbl.1 𝑥 𝜑
2 muldmmbl.2 𝑥 𝐴
3 muldmmbl.3 𝑥 𝐵
4 muldmmbl.4 ( 𝜑𝑆 ∈ SAlg )
5 muldmmbl.5 ( 𝜑𝐴𝑆 )
6 muldmmbl.6 ( 𝜑𝐵𝑆 )
7 2 3 nfin 𝑥 ( 𝐴𝐵 )
8 eqid ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ ( 𝐶 · 𝐷 ) ) = ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ ( 𝐶 · 𝐷 ) )
9 ovexd ( ( 𝜑𝑥 ∈ ( 𝐴𝐵 ) ) → ( 𝐶 · 𝐷 ) ∈ V )
10 1 7 8 9 dmmptdff ( 𝜑 → dom ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ ( 𝐶 · 𝐷 ) ) = ( 𝐴𝐵 ) )
11 4 5 6 salincld ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝑆 )
12 10 11 eqeltrd ( 𝜑 → dom ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ ( 𝐶 · 𝐷 ) ) ∈ 𝑆 )