Metamath Proof Explorer


Theorem adddmmbl2

Description: If two functions have domains in the sigma-algebra, the domain of their addition also belongs to the sigma-algebra. This is the first statement of Proposition 121H of Fremlin1, p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their addition. (Contributed by Glauco Siliprandi, 30-Dec-2024)

Ref Expression
Hypotheses adddmmbl2.1 _xF
adddmmbl2.2 _xG
adddmmbl2.3 φSSAlg
adddmmbl2.4 φdomFS
adddmmbl2.5 φdomGS
adddmmbl2.6 H=xdomFdomGFx+Gx
Assertion adddmmbl2 φdomHS

Proof

Step Hyp Ref Expression
1 adddmmbl2.1 _xF
2 adddmmbl2.2 _xG
3 adddmmbl2.3 φSSAlg
4 adddmmbl2.4 φdomFS
5 adddmmbl2.5 φdomGS
6 adddmmbl2.6 H=xdomFdomGFx+Gx
7 1 nfdm _xdomF
8 2 nfdm _xdomG
9 7 8 nfin _xdomFdomG
10 ovex Fx+GxV
11 9 10 6 dmmptif domH=domFdomG
12 11 a1i φdomH=domFdomG
13 3 4 5 salincld φdomFdomGS
14 12 13 eqeltrd φdomHS