Metamath Proof Explorer


Theorem addeq0

Description: Two complex numbers add up to zero iff they are each other's opposites. (Contributed by Thierry Arnoux, 2-May-2017)

Ref Expression
Assertion addeq0 ABA+B=0A=B

Proof

Step Hyp Ref Expression
1 0cnd AB0
2 simpr ABB
3 simpl ABA
4 1 2 3 subadd2d AB0B=AA+B=0
5 df-neg B=0B
6 5 eqeq1i B=A0B=A
7 eqcom B=AA=B
8 6 7 bitr3i 0B=AA=B
9 4 8 bitr3di ABA+B=0A=B