Metamath Proof Explorer


Theorem addsubassd

Description: Associative-type law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 φA
pncand.2 φB
subaddd.3 φC
Assertion addsubassd φA+B-C=A+B-C

Proof

Step Hyp Ref Expression
1 negidd.1 φA
2 pncand.2 φB
3 subaddd.3 φC
4 addsubass ABCA+B-C=A+B-C
5 1 2 3 4 syl3anc φA+B-C=A+B-C