Metamath Proof Explorer


Theorem adh-minimp-ax2c

Description: Derivation of a commuted form of ax-2 from adh-minimp and ax-mp . Polish prefix notation: CCpqCCpCqrCpr . (Contributed by BJ, 4-Apr-2021) (Revised by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minimp-ax2c φψφψχφχ

Proof

Step Hyp Ref Expression
1 adh-minimp-jarr-ax2c-lem3 θτηθτζθζφφ
2 adh-minimp-jarr-imim1-ax2c-lem1 θτηθτζθζφφθτηθτζθζφθτηθτζθζφφψχθτηθτζθζφψχ
3 1 2 ax-mp θτηθτζθζφθτηθτζθζφφψχθτηθτζθζφψχ
4 adh-minimp-sylsimp θτηθτζθζφθτηθτζθζφφψχθτηθτζθζφψχφψχθτηθτζθζφψχ
5 3 4 ax-mp φψχθτηθτζθζφψχ
6 adh-minimp-jarr-imim1-ax2c-lem1 φψχθτηθτζθζφψχφψχφψχθτηθτζθζφψχφχφψχφχ
7 5 6 ax-mp φψχφψχθτηθτζθζφψχφχφψχφχ
8 adh-minimp-sylsimp φψχφψχθτηθτζθζφψχφχφψχφχθτηθτζθζφψχφχφψχφχ
9 7 8 ax-mp θτηθτζθζφψχφχφψχφχ
10 adh-minimp-jarr-imim1-ax2c-lem1 φψθτηθτζθζφψχφχ
11 adh-minimp-imim1 φψθτηθτζθζφψχφχθτηθτζθζφψχφχφψχφχφψφψχφχ
12 10 11 ax-mp θτηθτζθζφψχφχφψχφχφψφψχφχ
13 9 12 ax-mp φψφψχφχ