Metamath Proof Explorer


Theorem adh-minimp-ax2c

Description: Derivation of a commuted form of ax-2 from adh-minimp and ax-mp . Polish prefix notation: CCpqCCpCqrCpr . (Contributed by BJ, 4-Apr-2021) (Revised by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minimp-ax2c ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 adh-minimp-jarr-ax2c-lem3 ( ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) → 𝜑 )
2 adh-minimp-jarr-imim1-ax2c-lem1 ( ( ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) → 𝜑 ) → ( ( ( ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) → ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) ) → ( 𝜑 → ( 𝜓𝜒 ) ) ) → ( ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) → ( 𝜓𝜒 ) ) ) )
3 1 2 ax-mp ( ( ( ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) → ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) ) → ( 𝜑 → ( 𝜓𝜒 ) ) ) → ( ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) → ( 𝜓𝜒 ) ) )
4 adh-minimp-sylsimp ( ( ( ( ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) → ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) ) → ( 𝜑 → ( 𝜓𝜒 ) ) ) → ( ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) → ( 𝜓𝜒 ) ) ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) → ( 𝜓𝜒 ) ) ) )
5 3 4 ax-mp ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) → ( 𝜓𝜒 ) ) )
6 adh-minimp-jarr-imim1-ax2c-lem1 ( ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) → ( 𝜓𝜒 ) ) ) → ( ( ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑 → ( 𝜓𝜒 ) ) ) → ( ( ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) )
7 5 6 ax-mp ( ( ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑 → ( 𝜓𝜒 ) ) ) → ( ( ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) )
8 adh-minimp-sylsimp ( ( ( ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑 → ( 𝜓𝜒 ) ) ) → ( ( ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( ( ( ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) )
9 7 8 ax-mp ( ( ( ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) )
10 adh-minimp-jarr-imim1-ax2c-lem1 ( ( 𝜑𝜓 ) → ( ( ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) )
11 adh-minimp-imim1 ( ( ( 𝜑𝜓 ) → ( ( ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( ( ( ( ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) ) )
12 10 11 ax-mp ( ( ( ( ( ( ( 𝜃𝜏 ) → ( ( ( 𝜂𝜃 ) → ( 𝜏𝜁 ) ) → ( 𝜃𝜁 ) ) ) → 𝜑 ) → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) )
13 9 12 ax-mp ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) )