Step |
Hyp |
Ref |
Expression |
1 |
|
adh-minimp-jarr-ax2c-lem3 |
⊢ ( ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) → 𝜑 ) |
2 |
|
adh-minimp-jarr-imim1-ax2c-lem1 |
⊢ ( ( ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) → 𝜑 ) → ( ( ( ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) → ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) ) → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) → ( ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( ( ( ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) → ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) ) → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) → ( ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) |
4 |
|
adh-minimp-sylsimp |
⊢ ( ( ( ( ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) → ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) ) → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) → ( ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) ) |
5 |
3 4
|
ax-mp |
⊢ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) |
6 |
|
adh-minimp-jarr-imim1-ax2c-lem1 |
⊢ ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) → ( 𝜓 → 𝜒 ) ) ) → ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) → ( ( ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) ) |
7 |
5 6
|
ax-mp |
⊢ ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) → ( ( ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) |
8 |
|
adh-minimp-sylsimp |
⊢ ( ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) → ( ( ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) → ( ( ( ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) ) |
9 |
7 8
|
ax-mp |
⊢ ( ( ( ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) |
10 |
|
adh-minimp-jarr-imim1-ax2c-lem1 |
⊢ ( ( 𝜑 → 𝜓 ) → ( ( ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) |
11 |
|
adh-minimp-imim1 |
⊢ ( ( ( 𝜑 → 𝜓 ) → ( ( ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) → ( ( ( ( ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) → ( ( 𝜑 → 𝜓 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) ) ) |
12 |
10 11
|
ax-mp |
⊢ ( ( ( ( ( ( ( 𝜃 → 𝜏 ) → ( ( ( 𝜂 → 𝜃 ) → ( 𝜏 → 𝜁 ) ) → ( 𝜃 → 𝜁 ) ) ) → 𝜑 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) → ( ( 𝜑 → 𝜓 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) ) |
13 |
9 12
|
ax-mp |
⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) |