Step |
Hyp |
Ref |
Expression |
1 |
|
adh-minimp-sylsimp |
⊢ ( ( ( ( 𝜃 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) |
2 |
|
adh-minimp-jarr-imim1-ax2c-lem1 |
⊢ ( ( 𝜑 → 𝜓 ) → ( ( ( 𝜃 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) |
3 |
|
adh-minimp-jarr-imim1-ax2c-lem1 |
⊢ ( ( ( 𝜑 → 𝜓 ) → ( ( ( 𝜃 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) → ( ( ( 𝜌 → ( 𝜑 → 𝜓 ) ) → ( ( ( ( 𝜃 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ) → ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ) ) |
4 |
2 3
|
ax-mp |
⊢ ( ( ( 𝜌 → ( 𝜑 → 𝜓 ) ) → ( ( ( ( 𝜃 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ) → ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ) |
5 |
|
adh-minimp-sylsimp |
⊢ ( ( ( ( 𝜌 → ( 𝜑 → 𝜓 ) ) → ( ( ( ( 𝜃 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ) → ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ) → ( ( ( ( ( 𝜃 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) → ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ) ) |
6 |
4 5
|
ax-mp |
⊢ ( ( ( ( ( 𝜃 → 𝜑 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) → ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ) |
7 |
1 6
|
ax-mp |
⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) |