Metamath Proof Explorer


Theorem adh-minimp-imim1

Description: Derivation of imim1 ("left antimonotonicity of implication", theorem *2.06 of WhiteheadRussell p. 100) from adh-minimp and ax-mp . Polish prefix notation: CCpqCCqrCpr . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minimp-imim1 ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 adh-minimp-sylsimp ( ( ( ( 𝜃𝜑 ) → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) )
2 adh-minimp-jarr-imim1-ax2c-lem1 ( ( 𝜑𝜓 ) → ( ( ( 𝜃𝜑 ) → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) )
3 adh-minimp-jarr-imim1-ax2c-lem1 ( ( ( 𝜑𝜓 ) → ( ( ( 𝜃𝜑 ) → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( ( ( 𝜌 → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜃𝜑 ) → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) ) → ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) ) )
4 2 3 ax-mp ( ( ( 𝜌 → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜃𝜑 ) → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) ) → ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) )
5 adh-minimp-sylsimp ( ( ( ( 𝜌 → ( 𝜑𝜓 ) ) → ( ( ( ( 𝜃𝜑 ) → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) ) → ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) ) → ( ( ( ( ( 𝜃𝜑 ) → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) → ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) ) )
6 4 5 ax-mp ( ( ( ( ( 𝜃𝜑 ) → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) → ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) )
7 1 6 ax-mp ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) )