| Step |
Hyp |
Ref |
Expression |
| 1 |
|
adh-minimp-sylsimp |
|- ( ( ( ( th -> ph ) -> ( ps -> ch ) ) -> ( ph -> ch ) ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) |
| 2 |
|
adh-minimp-jarr-imim1-ax2c-lem1 |
|- ( ( ph -> ps ) -> ( ( ( th -> ph ) -> ( ps -> ch ) ) -> ( ph -> ch ) ) ) |
| 3 |
|
adh-minimp-jarr-imim1-ax2c-lem1 |
|- ( ( ( ph -> ps ) -> ( ( ( th -> ph ) -> ( ps -> ch ) ) -> ( ph -> ch ) ) ) -> ( ( ( rh -> ( ph -> ps ) ) -> ( ( ( ( th -> ph ) -> ( ps -> ch ) ) -> ( ph -> ch ) ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) ) -> ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) ) ) |
| 4 |
2 3
|
ax-mp |
|- ( ( ( rh -> ( ph -> ps ) ) -> ( ( ( ( th -> ph ) -> ( ps -> ch ) ) -> ( ph -> ch ) ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) ) -> ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) ) |
| 5 |
|
adh-minimp-sylsimp |
|- ( ( ( ( rh -> ( ph -> ps ) ) -> ( ( ( ( th -> ph ) -> ( ps -> ch ) ) -> ( ph -> ch ) ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) ) -> ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) ) -> ( ( ( ( ( th -> ph ) -> ( ps -> ch ) ) -> ( ph -> ch ) ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) -> ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) ) ) |
| 6 |
4 5
|
ax-mp |
|- ( ( ( ( ( th -> ph ) -> ( ps -> ch ) ) -> ( ph -> ch ) ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) -> ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) ) |
| 7 |
1 6
|
ax-mp |
|- ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) |