Metamath Proof Explorer


Theorem adh-minimp-sylsimp

Description: Derivation of jarr (also called "syll-simp") from minimp and ax-mp . Polish prefix notation: CCCpqrCqr . (Contributed by BJ, 4-Apr-2021) (Revised by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minimp-sylsimp
|- ( ( ( ph -> ps ) -> ch ) -> ( ps -> ch ) )

Proof

Step Hyp Ref Expression
1 adh-minimp-jarr-ax2c-lem3
 |-  ( ( ( ( ( ph -> ps ) -> ( ph -> ps ) ) -> ( ( ( ( ph -> ps ) -> ( ph -> ps ) ) -> ( ( ph -> ps ) -> ( ph -> ps ) ) ) -> ( ( ph -> ps ) -> ( ph -> ps ) ) ) ) -> ( ( ph -> ps ) -> ch ) ) -> ( ( ph -> ps ) -> ch ) )
2 adh-minimp-jarr-imim1-ax2c-lem1
 |-  ( ( ( ph -> ps ) -> ( ( ( ( ( ph -> ps ) -> ( ph -> ps ) ) -> ( ( ( ( ph -> ps ) -> ( ph -> ps ) ) -> ( ( ph -> ps ) -> ( ph -> ps ) ) ) -> ( ( ph -> ps ) -> ( ph -> ps ) ) ) ) -> ( ( ph -> ps ) -> ch ) ) -> ( ( ph -> ps ) -> ch ) ) ) -> ( ( ( ( ( ph -> ps ) -> ch ) -> ( ph -> ps ) ) -> ( ( ( ( ( ( ph -> ps ) -> ( ph -> ps ) ) -> ( ( ( ( ph -> ps ) -> ( ph -> ps ) ) -> ( ( ph -> ps ) -> ( ph -> ps ) ) ) -> ( ( ph -> ps ) -> ( ph -> ps ) ) ) ) -> ( ( ph -> ps ) -> ch ) ) -> ( ( ph -> ps ) -> ch ) ) -> ( ( ( ph -> ps ) -> ch ) -> ch ) ) ) -> ( ( ph -> ps ) -> ( ( ( ph -> ps ) -> ch ) -> ch ) ) ) )
3 adh-minimp-jarr-lem2
 |-  ( ( ( ( ph -> ps ) -> ( ( ( ( ( ph -> ps ) -> ( ph -> ps ) ) -> ( ( ( ( ph -> ps ) -> ( ph -> ps ) ) -> ( ( ph -> ps ) -> ( ph -> ps ) ) ) -> ( ( ph -> ps ) -> ( ph -> ps ) ) ) ) -> ( ( ph -> ps ) -> ch ) ) -> ( ( ph -> ps ) -> ch ) ) ) -> ( ( ( ( ( ph -> ps ) -> ch ) -> ( ph -> ps ) ) -> ( ( ( ( ( ( ph -> ps ) -> ( ph -> ps ) ) -> ( ( ( ( ph -> ps ) -> ( ph -> ps ) ) -> ( ( ph -> ps ) -> ( ph -> ps ) ) ) -> ( ( ph -> ps ) -> ( ph -> ps ) ) ) ) -> ( ( ph -> ps ) -> ch ) ) -> ( ( ph -> ps ) -> ch ) ) -> ( ( ( ph -> ps ) -> ch ) -> ch ) ) ) -> ( ( ph -> ps ) -> ( ( ( ph -> ps ) -> ch ) -> ch ) ) ) ) -> ( ( ( ( ( ( ph -> ps ) -> ( ph -> ps ) ) -> ( ( ( ( ph -> ps ) -> ( ph -> ps ) ) -> ( ( ph -> ps ) -> ( ph -> ps ) ) ) -> ( ( ph -> ps ) -> ( ph -> ps ) ) ) ) -> ( ( ph -> ps ) -> ch ) ) -> ( ( ph -> ps ) -> ch ) ) -> ( ( ph -> ps ) -> ( ( ( ph -> ps ) -> ch ) -> ch ) ) ) )
4 2 3 ax-mp
 |-  ( ( ( ( ( ( ph -> ps ) -> ( ph -> ps ) ) -> ( ( ( ( ph -> ps ) -> ( ph -> ps ) ) -> ( ( ph -> ps ) -> ( ph -> ps ) ) ) -> ( ( ph -> ps ) -> ( ph -> ps ) ) ) ) -> ( ( ph -> ps ) -> ch ) ) -> ( ( ph -> ps ) -> ch ) ) -> ( ( ph -> ps ) -> ( ( ( ph -> ps ) -> ch ) -> ch ) ) )
5 1 4 ax-mp
 |-  ( ( ph -> ps ) -> ( ( ( ph -> ps ) -> ch ) -> ch ) )
6 adh-minimp-jarr-imim1-ax2c-lem1
 |-  ( ( ( ( ph -> ps ) -> ch ) -> ( ( ph -> ps ) -> ( ( ( ph -> ps ) -> ch ) -> ch ) ) ) -> ( ( ( ps -> ( ( ph -> ps ) -> ch ) ) -> ( ( ( ph -> ps ) -> ( ( ( ph -> ps ) -> ch ) -> ch ) ) -> ( ps -> ch ) ) ) -> ( ( ( ph -> ps ) -> ch ) -> ( ps -> ch ) ) ) )
7 adh-minimp-jarr-lem2
 |-  ( ( ( ( ( ph -> ps ) -> ch ) -> ( ( ph -> ps ) -> ( ( ( ph -> ps ) -> ch ) -> ch ) ) ) -> ( ( ( ps -> ( ( ph -> ps ) -> ch ) ) -> ( ( ( ph -> ps ) -> ( ( ( ph -> ps ) -> ch ) -> ch ) ) -> ( ps -> ch ) ) ) -> ( ( ( ph -> ps ) -> ch ) -> ( ps -> ch ) ) ) ) -> ( ( ( ph -> ps ) -> ( ( ( ph -> ps ) -> ch ) -> ch ) ) -> ( ( ( ph -> ps ) -> ch ) -> ( ps -> ch ) ) ) )
8 6 7 ax-mp
 |-  ( ( ( ph -> ps ) -> ( ( ( ph -> ps ) -> ch ) -> ch ) ) -> ( ( ( ph -> ps ) -> ch ) -> ( ps -> ch ) ) )
9 5 8 ax-mp
 |-  ( ( ( ph -> ps ) -> ch ) -> ( ps -> ch ) )