Metamath Proof Explorer


Theorem adh-minimp-ax2-lem4

Description: Fourth lemma for the derivation of ax-2 from adh-minimp and ax-mp . Polish prefix notation: CpCCqCprCqr . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minimp-ax2-lem4 ( 𝜑 → ( ( 𝜓 → ( 𝜑𝜒 ) ) → ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 adh-minimp-ax2c ( ( 𝜓𝜑 ) → ( ( 𝜓 → ( 𝜑𝜒 ) ) → ( 𝜓𝜒 ) ) )
2 adh-minimp-sylsimp ( ( ( 𝜓𝜑 ) → ( ( 𝜓 → ( 𝜑𝜒 ) ) → ( 𝜓𝜒 ) ) ) → ( 𝜑 → ( ( 𝜓 → ( 𝜑𝜒 ) ) → ( 𝜓𝜒 ) ) ) )
3 1 2 ax-mp ( 𝜑 → ( ( 𝜓 → ( 𝜑𝜒 ) ) → ( 𝜓𝜒 ) ) )