Metamath Proof Explorer


Theorem adh-minimp-ax2

Description: Derivation of ax-2 from adh-minimp and ax-mp . Polish prefix notation: CCpCqrCCpqCpr . (Contributed by BJ, 4-Apr-2021) (Revised by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minimp-ax2 ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 adh-minimp-ax2-lem4 ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) )
2 adh-minimp-ax2c ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) )
3 adh-minimp-ax2-lem4 ( ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) ) )
4 2 3 ax-mp ( ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) )
5 1 4 ax-mp ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )