| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							adh-minimp-ax2-lem4 | 
							⊢ ( ( 𝜑  →  ( 𝜓  →  𝜒 ) )  →  ( ( ( 𝜑  →  𝜓 )  →  ( ( 𝜑  →  ( 𝜓  →  𝜒 ) )  →  ( 𝜑  →  𝜒 ) ) )  →  ( ( 𝜑  →  𝜓 )  →  ( 𝜑  →  𝜒 ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							adh-minimp-ax2c | 
							⊢ ( ( 𝜑  →  𝜓 )  →  ( ( 𝜑  →  ( 𝜓  →  𝜒 ) )  →  ( 𝜑  →  𝜒 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							adh-minimp-ax2-lem4 | 
							⊢ ( ( ( 𝜑  →  𝜓 )  →  ( ( 𝜑  →  ( 𝜓  →  𝜒 ) )  →  ( 𝜑  →  𝜒 ) ) )  →  ( ( ( 𝜑  →  ( 𝜓  →  𝜒 ) )  →  ( ( ( 𝜑  →  𝜓 )  →  ( ( 𝜑  →  ( 𝜓  →  𝜒 ) )  →  ( 𝜑  →  𝜒 ) ) )  →  ( ( 𝜑  →  𝜓 )  →  ( 𝜑  →  𝜒 ) ) ) )  →  ( ( 𝜑  →  ( 𝜓  →  𝜒 ) )  →  ( ( 𝜑  →  𝜓 )  →  ( 𝜑  →  𝜒 ) ) ) ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							ax-mp | 
							⊢ ( ( ( 𝜑  →  ( 𝜓  →  𝜒 ) )  →  ( ( ( 𝜑  →  𝜓 )  →  ( ( 𝜑  →  ( 𝜓  →  𝜒 ) )  →  ( 𝜑  →  𝜒 ) ) )  →  ( ( 𝜑  →  𝜓 )  →  ( 𝜑  →  𝜒 ) ) ) )  →  ( ( 𝜑  →  ( 𝜓  →  𝜒 ) )  →  ( ( 𝜑  →  𝜓 )  →  ( 𝜑  →  𝜒 ) ) ) )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							ax-mp | 
							⊢ ( ( 𝜑  →  ( 𝜓  →  𝜒 ) )  →  ( ( 𝜑  →  𝜓 )  →  ( 𝜑  →  𝜒 ) ) )  |