Metamath Proof Explorer


Theorem adh-minimp-ax2

Description: Derivation of ax-2 from adh-minimp and ax-mp . Polish prefix notation: CCpCqrCCpqCpr . (Contributed by BJ, 4-Apr-2021) (Revised by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minimp-ax2
|- ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) )

Proof

Step Hyp Ref Expression
1 adh-minimp-ax2-lem4
 |-  ( ( ph -> ( ps -> ch ) ) -> ( ( ( ph -> ps ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) )
2 adh-minimp-ax2c
 |-  ( ( ph -> ps ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) )
3 adh-minimp-ax2-lem4
 |-  ( ( ( ph -> ps ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) ) -> ( ( ( ph -> ( ps -> ch ) ) -> ( ( ( ph -> ps ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) ) -> ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) ) )
4 2 3 ax-mp
 |-  ( ( ( ph -> ( ps -> ch ) ) -> ( ( ( ph -> ps ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) ) -> ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) )
5 1 4 ax-mp
 |-  ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) )