Metamath Proof Explorer


Theorem adh-minimp-ax2-lem4

Description: Fourth lemma for the derivation of ax-2 from adh-minimp and ax-mp . Polish prefix notation: CpCCqCprCqr . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minimp-ax2-lem4
|- ( ph -> ( ( ps -> ( ph -> ch ) ) -> ( ps -> ch ) ) )

Proof

Step Hyp Ref Expression
1 adh-minimp-ax2c
 |-  ( ( ps -> ph ) -> ( ( ps -> ( ph -> ch ) ) -> ( ps -> ch ) ) )
2 adh-minimp-sylsimp
 |-  ( ( ( ps -> ph ) -> ( ( ps -> ( ph -> ch ) ) -> ( ps -> ch ) ) ) -> ( ph -> ( ( ps -> ( ph -> ch ) ) -> ( ps -> ch ) ) ) )
3 1 2 ax-mp
 |-  ( ph -> ( ( ps -> ( ph -> ch ) ) -> ( ps -> ch ) ) )