Metamath Proof Explorer


Theorem afv0fv0

Description: If the value of the alternative function at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afv0fv0 F'''A=FA=

Proof

Step Hyp Ref Expression
1 0ex V
2 eleq1a VF'''A=F'''AV
3 1 2 ax-mp F'''A=F'''AV
4 afvvfveq F'''AVF'''A=FA
5 eqeq1 F'''A=FAF'''A=FA=
6 5 biimpd F'''A=FAF'''A=FA=
7 4 6 syl F'''AVF'''A=FA=
8 3 7 mpcom F'''A=FA=