Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Jarvin Udandy aiffnbandciffatnotciffb  
				
		 
		
			
		 
		Description:   Given a is equivalent to (not b), c is equivalent to a, there exists a
       proof for ( not ( c iff b ) ).  (Contributed by Jarvin Udandy , 7-Sep-2016) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						aiffnbandciffatnotciffb.1    ⊢   φ   ↔   ¬   ψ          
					 
					
						aiffnbandciffatnotciffb.2    ⊢   χ   ↔   φ        
					 
				
					Assertion 
					aiffnbandciffatnotciffb   ⊢   ¬    χ   ↔   ψ         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							aiffnbandciffatnotciffb.1   ⊢   φ   ↔   ¬   ψ          
						
							2 
								
							 
							aiffnbandciffatnotciffb.2   ⊢   χ   ↔   φ        
						
							3 
								2  1 
							 
							bitri   ⊢   χ   ↔   ¬   ψ          
						
							4 
								
							 
							xor3   ⊢   ¬    χ   ↔   ψ      ↔    χ   ↔   ¬   ψ           
						
							5 
								3  4 
							 
							mpbir  ⊢   ¬    χ   ↔   ψ