Metamath Proof Explorer
		
		
		
		Description:  Given a is equivalent to F., Given b is equivalent to T., there exists a
       proof for a-xor-b.  (Contributed by Jarvin Udandy, 31-Aug-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | aisfbistiaxb.1 |  | 
					
						|  |  | aisfbistiaxb.2 |  | 
				
					|  | Assertion | aisfbistiaxb |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aisfbistiaxb.1 |  | 
						
							| 2 |  | aisfbistiaxb.2 |  | 
						
							| 3 | 1 | aisfina |  | 
						
							| 4 | 2 | aistia |  | 
						
							| 5 | 3 4 | abnotataxb |  |