Metamath Proof Explorer
Description: Given a is equivalent to F., Given b is equivalent to T., there exists a
proof for a-xor-b. (Contributed by Jarvin Udandy, 31-Aug-2016)
|
|
Ref |
Expression |
|
Hypotheses |
aisfbistiaxb.1 |
|- ( ph <-> F. ) |
|
|
aisfbistiaxb.2 |
|- ( ps <-> T. ) |
|
Assertion |
aisfbistiaxb |
|- ( ph \/_ ps ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aisfbistiaxb.1 |
|- ( ph <-> F. ) |
| 2 |
|
aisfbistiaxb.2 |
|- ( ps <-> T. ) |
| 3 |
1
|
aisfina |
|- -. ph |
| 4 |
2
|
aistia |
|- ps |
| 5 |
3 4
|
abnotataxb |
|- ( ph \/_ ps ) |