Metamath Proof Explorer


Theorem alephexp2

Description: An expression equinumerous to 2 to an aleph power. The proof equates the two laws for cardinal exponentiation alephexp1 (which works if the base is less than or equal to the exponent) and infmap (which works if the exponent is less than or equal to the base). They can be equated only when the base is equal to the exponent, and this is the result. (Contributed by NM, 23-Oct-2004)

Ref Expression
Assertion alephexp2 AOn2𝑜Ax|xAxA

Proof

Step Hyp Ref Expression
1 alephgeom AOnωA
2 fvex AV
3 ssdomg AVωAωA
4 2 3 ax-mp ωAωA
5 1 4 sylbi AOnωA
6 domrefg AVAA
7 2 6 ax-mp AA
8 infmap ωAAAAAx|xAxA
9 5 7 8 sylancl AOnAAx|xAxA
10 pm3.2 AOnAOnAOnAOn
11 10 pm2.43i AOnAOnAOn
12 ssid AA
13 alephexp1 AOnAOnAAAA2𝑜A
14 11 12 13 sylancl AOnAA2𝑜A
15 enen1 AA2𝑜AAAx|xAxA2𝑜Ax|xAxA
16 14 15 syl AOnAAx|xAxA2𝑜Ax|xAxA
17 9 16 mpbid AOn2𝑜Ax|xAxA