Metamath Proof Explorer


Theorem alephprc

Description: The class of all transfinite cardinal numbers (the range of the aleph function) is a proper class. Proposition 10.26 of TakeutiZaring p. 90. (Contributed by NM, 11-Nov-2003)

Ref Expression
Assertion alephprc ¬ranV

Proof

Step Hyp Ref Expression
1 cardprc x|cardx=xV
2 1 neli ¬x|cardx=xV
3 cardnum x|cardx=x=ωran
4 3 eleq1i x|cardx=xVωranV
5 2 4 mtbi ¬ωranV
6 omex ωV
7 unexg ωVranVωranV
8 6 7 mpan ranVωranV
9 5 8 mto ¬ranV