Metamath Proof Explorer


Theorem alsc2d

Description: Deduction rule: Given "all some" applied to a class, you can extract the "there exists" part. (Contributed by David A. Wheeler, 20-Oct-2018)

Ref Expression
Hypothesis alsc2d.1 φ∀!xAψ
Assertion alsc2d φxxA

Proof

Step Hyp Ref Expression
1 alsc2d.1 φ∀!xAψ
2 df-alsc ∀!xAψxAψxxA
3 1 2 sylib φxAψxxA
4 3 simprd φxxA