Metamath Proof Explorer


Theorem alsconv

Description: There is an equivalence between the two "all some" forms. (Contributed by David A. Wheeler, 22-Oct-2018)

Ref Expression
Assertion alsconv ∀!xxAφ∀!xAφ

Proof

Step Hyp Ref Expression
1 df-ral xAφxxAφ
2 1 anbi1i xAφxxAxxAφxxA
3 df-alsc ∀!xAφxAφxxA
4 df-alsi ∀!xxAφxxAφxxA
5 2 3 4 3bitr4ri ∀!xxAφ∀!xAφ