Metamath Proof Explorer


Theorem alsi2d

Description: Deduction rule: Given "all some" applied to a top-level inference, you can extract the "exists" part. (Contributed by David A. Wheeler, 20-Oct-2018)

Ref Expression
Hypothesis alsi2d.1 φ ∀! x ψ χ
Assertion alsi2d φ x ψ

Proof

Step Hyp Ref Expression
1 alsi2d.1 φ ∀! x ψ χ
2 df-alsi ∀! x ψ χ x ψ χ x ψ
3 1 2 sylib φ x ψ χ x ψ
4 3 simprd φ x ψ