Metamath Proof Explorer


Theorem alsi2d

Description: Deduction rule: Given "all some" applied to a top-level inference, you can extract the "exists" part. (Contributed by David A. Wheeler, 20-Oct-2018)

Ref Expression
Hypothesis alsi2d.1 ( 𝜑 → ∀! 𝑥 ( 𝜓𝜒 ) )
Assertion alsi2d ( 𝜑 → ∃ 𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 alsi2d.1 ( 𝜑 → ∀! 𝑥 ( 𝜓𝜒 ) )
2 df-alsi ( ∀! 𝑥 ( 𝜓𝜒 ) ↔ ( ∀ 𝑥 ( 𝜓𝜒 ) ∧ ∃ 𝑥 𝜓 ) )
3 1 2 sylib ( 𝜑 → ( ∀ 𝑥 ( 𝜓𝜒 ) ∧ ∃ 𝑥 𝜓 ) )
4 3 simprd ( 𝜑 → ∃ 𝑥 𝜓 )