Metamath Proof Explorer


Theorem anass1rs

Description: Commutative-associative law for conjunction in an antecedent. (Contributed by Jeff Madsen, 19-Jun-2011)

Ref Expression
Hypothesis anass1rs.1 φψχθ
Assertion anass1rs φχψθ

Proof

Step Hyp Ref Expression
1 anass1rs.1 φψχθ
2 1 anassrs φψχθ
3 2 an32s φχψθ