Metamath Proof Explorer


Theorem animpimp2impd

Description: Deduction deriving nested implications from conjunctions. (Contributed by AV, 21-Aug-2022)

Ref Expression
Hypotheses animpimp2impd.1 ψφχθη
animpimp2impd.2 ψφθητ
Assertion animpimp2impd φψχψθτ

Proof

Step Hyp Ref Expression
1 animpimp2impd.1 ψφχθη
2 animpimp2impd.2 ψφθητ
3 2 expr ψφθητ
4 3 a2d ψφθηθτ
5 1 4 syld ψφχθτ
6 5 expcom φψχθτ
7 6 a2d φψχψθτ