Metamath Proof Explorer


Theorem arwdmcd

Description: Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypothesis arwrcl.a A=ArrowC
Assertion arwdmcd FAF=domaFcodaF2ndF

Proof

Step Hyp Ref Expression
1 arwrcl.a A=ArrowC
2 eqid HomaC=HomaC
3 1 2 arwhoma FAFdomaFHomaCcodaF
4 2 homadmcd FdomaFHomaCcodaFF=domaFcodaF2ndF
5 3 4 syl FAF=domaFcodaF2ndF