Description: Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | arwrcl.a | ⊢ 𝐴 = ( Arrow ‘ 𝐶 ) | |
| Assertion | arwdmcd | ⊢ ( 𝐹 ∈ 𝐴 → 𝐹 = 〈 ( doma ‘ 𝐹 ) , ( coda ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arwrcl.a | ⊢ 𝐴 = ( Arrow ‘ 𝐶 ) | |
| 2 | eqid | ⊢ ( Homa ‘ 𝐶 ) = ( Homa ‘ 𝐶 ) | |
| 3 | 1 2 | arwhoma | ⊢ ( 𝐹 ∈ 𝐴 → 𝐹 ∈ ( ( doma ‘ 𝐹 ) ( Homa ‘ 𝐶 ) ( coda ‘ 𝐹 ) ) ) |
| 4 | 2 | homadmcd | ⊢ ( 𝐹 ∈ ( ( doma ‘ 𝐹 ) ( Homa ‘ 𝐶 ) ( coda ‘ 𝐹 ) ) → 𝐹 = 〈 ( doma ‘ 𝐹 ) , ( coda ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |
| 5 | 3 4 | syl | ⊢ ( 𝐹 ∈ 𝐴 → 𝐹 = 〈 ( doma ‘ 𝐹 ) , ( coda ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |