Description: Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | arwrcl.a | |- A = ( Arrow ` C ) |
|
| Assertion | arwdmcd | |- ( F e. A -> F = <. ( domA ` F ) , ( codA ` F ) , ( 2nd ` F ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arwrcl.a | |- A = ( Arrow ` C ) |
|
| 2 | eqid | |- ( HomA ` C ) = ( HomA ` C ) |
|
| 3 | 1 2 | arwhoma | |- ( F e. A -> F e. ( ( domA ` F ) ( HomA ` C ) ( codA ` F ) ) ) |
| 4 | 2 | homadmcd | |- ( F e. ( ( domA ` F ) ( HomA ` C ) ( codA ` F ) ) -> F = <. ( domA ` F ) , ( codA ` F ) , ( 2nd ` F ) >. ) |
| 5 | 3 4 | syl | |- ( F e. A -> F = <. ( domA ` F ) , ( codA ` F ) , ( 2nd ` F ) >. ) |