Metamath Proof Explorer


Theorem arwhom

Description: The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses arwrcl.a A = Arrow C
arwhom.j J = Hom C
Assertion arwhom F A 2 nd F dom a F J cod a F

Proof

Step Hyp Ref Expression
1 arwrcl.a A = Arrow C
2 arwhom.j J = Hom C
3 eqid Hom a C = Hom a C
4 1 3 arwhoma F A F dom a F Hom a C cod a F
5 3 2 homahom F dom a F Hom a C cod a F 2 nd F dom a F J cod a F
6 4 5 syl F A 2 nd F dom a F J cod a F