Metamath Proof Explorer


Theorem arwhom

Description: The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses arwrcl.a
|- A = ( Arrow ` C )
arwhom.j
|- J = ( Hom ` C )
Assertion arwhom
|- ( F e. A -> ( 2nd ` F ) e. ( ( domA ` F ) J ( codA ` F ) ) )

Proof

Step Hyp Ref Expression
1 arwrcl.a
 |-  A = ( Arrow ` C )
2 arwhom.j
 |-  J = ( Hom ` C )
3 eqid
 |-  ( HomA ` C ) = ( HomA ` C )
4 1 3 arwhoma
 |-  ( F e. A -> F e. ( ( domA ` F ) ( HomA ` C ) ( codA ` F ) ) )
5 3 2 homahom
 |-  ( F e. ( ( domA ` F ) ( HomA ` C ) ( codA ` F ) ) -> ( 2nd ` F ) e. ( ( domA ` F ) J ( codA ` F ) ) )
6 4 5 syl
 |-  ( F e. A -> ( 2nd ` F ) e. ( ( domA ` F ) J ( codA ` F ) ) )