Description: The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | arwrcl.a | |- A = ( Arrow ` C ) | |
| arwhom.j | |- J = ( Hom ` C ) | ||
| Assertion | arwhom | |- ( F e. A -> ( 2nd ` F ) e. ( ( domA ` F ) J ( codA ` F ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | arwrcl.a | |- A = ( Arrow ` C ) | |
| 2 | arwhom.j | |- J = ( Hom ` C ) | |
| 3 | eqid | |- ( HomA ` C ) = ( HomA ` C ) | |
| 4 | 1 3 | arwhoma | |- ( F e. A -> F e. ( ( domA ` F ) ( HomA ` C ) ( codA ` F ) ) ) | 
| 5 | 3 2 | homahom | |- ( F e. ( ( domA ` F ) ( HomA ` C ) ( codA ` F ) ) -> ( 2nd ` F ) e. ( ( domA ` F ) J ( codA ` F ) ) ) | 
| 6 | 4 5 | syl | |- ( F e. A -> ( 2nd ` F ) e. ( ( domA ` F ) J ( codA ` F ) ) ) |